Go to USC Nanostructure Materials
&
Devices Laboratory
Publications >>

 

Publications by Research Area

 

The Madhukar Group has published nearly 350 papers, book chapters, etcetera. Below is a list of selected publications.
References VII 36 and VII 38 below are amongst the most highly cited papers in all of semiconductor nanotechnology and have together garnered over 1700 citations.


I. Solar Energy Conversion using Novel Hybrid Nanostructures

II. Biophysics, Bioengineering, and Nanomedicine: Imaging of Cellular Processes and Cellular Prostheses
III. Nanocrystal-Substrate Hybrid Integrated Nanostructures
IV. Nanocrystal Manipulation on Surfaces
V. Electronic and Optoelectronic Devices: Infrared Detectors
VI. Highly Strained Epitaxy: Coherent Islands & Stress Engineered Quantum Dots
VII. Lattice-Matched Growth on Patterned Substrates
VIII. Strained Epitaxy: Defect Reduction via Growth on Patterned Substrates
IX. Molecular Beam Epitaxy, Growth Kinetics, Surface Chemical Reactions, & Long Range Order in Alloys
X. Disordered Systems (Low Dimensional and Interfacial)
XI. Two Dimensional Systems
XII. Transport in One Dimension (Organic conductors, Molecular Solids)
XIII. Surface Science
XIV. Magnetism

 

I. Solar Energy Conversion Exploiting Quantum Dots and Nanowires

1. Z. Lingley, S. Lu. and A. Madhukar, "A High Quantum Efficiency Preserving Approach to Ligand Exchange on Lead Sulfide Quantum Dots and Interdot Resonant Energy Transfer" Nano Lett., 11, 2887-2891 (2011)

2. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, " Photocurrent Induced by Nonradiative Energy Transfer from Nanocrystal Quantum Dots to Adjacent Silicon Nanowire Conducting Channels: Towards a New Solar Cell Paradigm" Nano Lett., 9, 4548 (2009)

3. S. Lu and A. Madhukar, "Nonradiative Resonant Excitation Transfer from Nanocrystal Quantum Dots to Adjacent Quantum Channels", Nano Lett., 7, 3443 (2007).

II. Biophysics, Bioengineering, and Nanomedicine

1. J. K. Lee, S. Lu, and A. Madhukar, "Real-Time Dynamics of Ca2+, Caspase-3/7, and Morphological Changes in Retinal Ganglion Cell Apoptosis under Elevated Pressure." PLoS ONE, 5, e13437 (2010)

2. S. Lu and A. Madhukar, "Cellular prostheses: functional abiotic nanosystems to proble, manipulate, and endow functions in live cells." Nanomedicine: Nanotechnoloty, Biology, and Medicine, 6, 409-418 (2010)

3. S. Lu, A. Bansal, W. Soussou, T. W. Berger, and A. Madhukar, Receptor-ligand based specific cell adhesion on solid surfaces: hippocampal neuronal cells on bilinker functionalized glass, Nano Lett. 6, 1977 (2006).

III. Nanocrystal-Substrate Hybrid Integrated Nanostructures

1. A. Madhukar, S. Lu, A. Konkar, Y. Zhang, M. Ho, S. Hughes, and A. P. Alivisatos, "Integrated Semiconductor Nanocrystal and Epitaxical Nanostructure Systems: Structural and Optical Behavior," Nano Lett. 5, 479 (2005).

2. A. Konkar, S. Lu, A. Madhukar, S. M. Hughes, and A. P. Alivisatos, "Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: High resolution transmission electron microscopy," Nano Lett. 5, 969 (2005).

 

IV. Nanocrystal Manipulation on Surfaces

1. S. Meltzer, R. Resch, B. E. Koel, M. E. Thompson, A. Madhukar, A. A. G. Requicha, and P. Will, "Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates", Langmuir, 17, 1713 (2001).
2. R. Resch, S. Meltzer, T. Vallant, H. Hoffman, B. E. Koel, A. Madhukar, A. A. G. Requicha, and P. Will, "Immobilizing Au nanoparticles on SiO2 surfaces using octadecylsiloxane monolayers", Langmuir, 17, 5666 (2001).
3. R. Resch, D. Lewis, S. Meltzer, N. Montoya, B.E. Koel, A. Madhukar, A.A.G. Requicha, and P. Will, "Manipulation of gold nanoparticles in liquid environments using scanning force microscopy", Ultramicroscopy, 82, 135 (2000)
4. R. Resch, C. Baur, A. Bugacov, B.E. Koel, P. M. Echternach, A. Madhukar, N. Montoya A.A.G. Requicha, and P. Will "Linking and manipulation of gold and multinanoparticle structures using dithiols and scanning force microscopy", J. Phys. Chem. B103, 3647 (1999).
5. T.R. Ramachandran, C. Baur, A. Bugacov, A. Madhukar, B. E. Koel, A. A. A. Requicha, and C. Gazen, "Direct and controlled manipulation of nanometer - sized particles using non-contact atomic force microscope", Nanotechnology, 9, 237 (1998).


V. Electronic and Optoelectronic Devices

1. T. Asano, C. Hu, Y. Zhang, M. Liu, J.C. Campbell, and A. Madhukar, "Design Consideration and Demonstration of Resonant-Cavity-Enhanced Quantum Dot Infrared Photodetectors in Mid-Infrared Wavelength Regime (3-5 micron)." IEEE J. of Quantum Electronics, 46, 1484 (2010)

2. T. Asano, Z. Fang, and A. Madhukar, "Deep levels in GaAs(001)/InAs/InGaAs/GaAs self-assembled quantum dot structures and their effect of quantum dot devides." J. of Applied Physics, 107, 073111 (2010)

3. T. Asano, A. Madhukar, K. Mahalingham, G.J. Brown, "Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures fro infrared detectors" J. Appl. Phys, 104, 113115 (2008)
4 . E. T. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, "High detectivity InAs quantum dot infrared photodetectors," Appl. Phys. Lett. 84, 3277 (2004).
5. A. Madhukar and J. C. Campbell, "Quantum dot infrared photodetectors," Semiconductor Nanostructures for Optoelectronic Applications, Ed. T. Steiner, Artech House, Inc. (Norwood, MA), Chapter 3, (2004).
6. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and A. Madhukar,"Noise and photoconductive gain in InAs quantum dot infrared photodetectors", App. Phys. Lett. 83, 1234? (2003)
7. E. T. Kim, Z. H. Chen, M. Ho, and A. Madhukar, Tailoring mid- and long-wavelength dual response of InAs quantum-dot infrared photodetectors using InxGa1-xAs capping layers, J. Vac. Sci. Technol. B 20, 1188 (2002).
8. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and A. Madhukar, Voltage-controllable multi-wavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection, J. Appl. Phys. 92, 4141 (2002).
9. Z. Ye, J. C. Campbell, Z. Chen, E. T. Kim, and A. Madhukar, Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity, IEEE J. Quantum Electr. 38, 1234? (2002).
10. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs(001)," IEEE Photonic Tech. Lett. 8, 965 (1996).
11. K. Kaviani, A. Madhukar, J. J. Brown, and L. E. Larson, "Realization of doped-channel MISFETs with high breakdown voltage in AlGaAs/InGaAs based material system," Electron. Lett. 30, 669 (1994).
12. K. Kaviani, K. Z. Hu, Q. H. Xie, and A. Madhukar, "Realization of high performance doped channel MISFETs in highly strained AlGaAs/InGaAs/AlGaAs based quantum wells," J. of Cryst. Growth 127, 68 (1993).
13. K. Z. Hu, L. Chen, K. Kaviani, P. Chen, and A. Madhukar, "All optical photonic switches using integrated inverted asymmetric Fabry-Perot modulators and heterojunction phototransistors," IEEE Photonic Tech. L. 4, 263 (1992).
14. L. Chen, K. H. Hu, R. M. Kapre, and A. Madhukar, "High contrast ratio self electro-optic devices based on inverted InGaAs/GaAs asymmetric Fabry-Perot modulator," Appl. Phys. Lett. 60, 422 (1992).
15. L. Chen, K. Z. Hu, R. M. Kapre, W. Chen, and A. Madhukar, "High contrast optically bistable optoelectronic switches based on InGaAs/GaAs(100) conventional and inverted asymmetric Fabry-Perot modulators grown via molecular beam epitaxy," J. Vac. Sci. Technol. B 10, 1014 (1992).
16. R. M. Kapre, A. Madhukar, and S. Guha, "Highly strained GaAs/InGaAs/AlAs resonant tunneling diodes with simultaneously high peak current densities and peak-to-valley ratios at room temperature," Appl. Phys. Lett. 58, 2255 (1991).
17. L. Chen, R. M. Kapre, K. Z. Hu, and A. Madhukar, "High contrast optically bistable optoelectronic switch based on InGaAs/GaAs(100) asymmetric Fabry-Perot modulator, detector, and resonant tunneling diode," Appl. Phys. Lett. 59,1523 (1991).
18. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, C. Kyriakakis, Z. Karim, and A. R. Tanguay, Jr., "Inverted cavity GaAs/InGaAs asymmetric Fabry-Perot reflection modulator," Appl. Phys. Lett. 59, 1664 (1991).
19. N. M. Cho, P. G. Newman, D. J. Kim, A. Madhukar, D. D. Smith, T. Aucoin, and G. J. Iafrate, "Realization of high mobility in inverted AlxGa1-xAs/GaAs heterojunctions", App. Phys. Lett. 52, 2037 (1988).

 

VI. Highly Strained Epitaxy: Coherent Islands & Stress Engineered Quantum Dots


1. M. A. Makeev and A. Madhukar, "Stress relaxation in lattice-mismatched semiconductor overlayers on patterned substrates: atomistic simulation studies," Handbook of Semiconductor Nanostructures and Nanodevices, Eds. A. A. Balandin and K. L. Wang, Am. Scientific Publishers, Vol. X, Chapter 7, (2006).
2. M. A. Makeev and A. Madhukar, "Calculation of vertical correlation probablility in GeSi(001) shallow island quantum dot multilayer systems," Nano Lett. 6, 1279, (2006).
3. M. A. Makeev, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, "Effect of geometry on stress relaxation in InAs/GaAs rectangular nanomesas: Multimillion-atom molecular dynamics simulations," J. Appl. Phys. 98, 114313, (2005).
4. M. A. Makeev, W. Yu, and A. Madhukar, "Atomic scale stresses and strains in Ge/Si(001) nanopixels: An atomistic simulation study," J. Appl. Phys. 96, 4429 (2004).
5. M. A. Makeev and A. Madhukar, "Stress and strain fields from an array of spherical inclusions in semi-infinite elastic media: Ge nanoinclusions in Si," Phys. Rev. B 67, 073201 (2003).
6. M. A. Makeev, W. Yu, and A. Madhukar, "Stress distributions and energetics in the laterally ordered systems of buried pyramidal Ge/Si(001) islands: An atomistic simulation study," Phys. Rev. B 68, 195301 (2003).
7. X. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, "InAs/GaAs square nanomesas: Multimillion-atom molecular dynamics simulations on parallel computers," J. Appl. Phys. 94, 6762 (2003).
8. E.T. Kim, Z. Chen, and A. Madhukar, Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer, Appl. Phys. Lett. 81, 3473 (2002).
9. A. Madhukar, "Stress Engineered Quantum dots: Nature's Way", in "Nano Optoelctronics: Concepts, Physics, and Devices", Ed. M. Grundmann, Springer-Verlag, (Berlin, 2002).
10. M. Makeev and A. Madhukar, "Large-scale atomistic simulations of atomic displacements, stresses, and strains in nanoscale mesas: Effect of mesa edges, corners, and interfaces," Appl. Phys. Lett. 81, 3789 (2002).
11. M. A. Makeev and A. Madhukar, "Simulations of atomic level stresses in systems of buried Ge/Si islands", Phys. Rev. Lett. 86, 5542 (2001).
12. I. G. Rosen, T. Parent, C. Cooper, P. Chen, and A. Madhukar, "A neural network based approach to determining a robust process recipe for the plasma enhanced deposition of silicon nitride thin films," IEEE T. Contr. Syst. T. 9, 271 (2001).
13. B. Fidan, I. G. Rosen, T. Parent, J. Tie, and A. Madhukar, "Multivariable intelligent control of CF4/O2 plasma etching of silicon nitride," Proceedings of 2001 American Control Conference, Arlington, VA, July 25-27, 2, 1280 (2001).
14. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, "Million-atom molecular dynamics simulation of flat InAs overlayers with self-limiting thickness on GaAs square nanomesas," Appl. Phys. Lett. 78, 3717 (2001).
15. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, "Critical lateral size for stress domain formation in InAs/GaAs square nanomesas: A multimillion-atom molecular dynamics study," Appl. Phys. Lett. 79, 4577 (2001).
16. E. T. Kim, Z. H. Chen, and A. Madhukar, Tailoring detection bands of InAs quantum-dot infrared photo-detectors using InxGa1-xAs strain-relieving quantum wells, Appl. Phys. Lett. 79, 3341 (2001).
17. A. Omeltchenko, M. E. Bachlechner, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar, and P. Messina, "Stress domains in Si(111)/a-Si3N4 nanopixel: ten-million-atom molecular dynamics simulations on parallel computers," Phys. Rev. Lett. 84, 318 (2000).
18. M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjö, and A. Madhukar, "Dislocation emission at the silicon/silicon nitride interface: a million atom molecular dynamics simulation on parallel computers," Phys. Rev. Lett. 84, 322 (2000).
19. A. Nakano, M. E. Bachlechner, P. Branicio, T. J. Campbell, I. Ebbsjö, R. K. Kalia, A. Madhukar, S. Ogata, A. Omeltchenko, J. P. Rino, F. Shimojo, P. Walsh, and P. Vashishta, "Large-scale atomistic modeling of nanoelectronic structures," IEEE T. Electron. Dev. 47, 1804 (2000).
20. X. Su, R. K. Kalia, A. Madhukar, A. Nakano, and P. Vashishta, "Multimillion atom simulation of atomic-level surface stresses on InAs/GaAs nanomesas," Proc. of MRS Symposium, Fall 1999, 548, 269 (2000).
21. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar, Punctuated island growth: an approach to examination and control of quantum dot density, size, and shape evolution, Appl. Phys. Lett. 75, 85 (1999).
22. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, "Enhanced polar exciton- LO-phonon interaction in quantum dots ", Phys. Rev. Lett., 83, 4654 (1999).
23. A. Nakano, M. Bachlechner, T. Campbell, R. Kalia, A. Omeltchenko, K. Tsuruta, P. Vashishta, S. Ogata, I. Ebbsjo, A. Madhukar, "Atomistic Simulation of Nanostructured Materials Using Parallel Multiresolution Algorithms", IEEE Computational Science & Engineering, 5, 68 (1998).
24. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, Independent manipulation of density and size of stress-driven self assembled quantum dots, Appl. Phys. Lett. 73, 1841 (1998).
25. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Excitation transfer in self-organized asymmetric quantum-dot pairs, Phys. Rev. B 58, R10151 (1998).
26. A. Konkar, R. Heitz, T.R. Ramachandran, P. Chen, and A. Madhukar, "Fabrication of strained InAs island ensembles on nonplanar patterned GaAs (001) substrates" J. Vac. Sci. Technol. B 16, 3 (1998);
27. A. Konkar, A. Madhukar, and P. Chen, " Stress-engineered spatially selective self-assembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates " App. Phys. Lett., 72, 220 (1998)
28. A. Madhukar, T. R. Ramachandran, A. Konkar, I. Mukhametzhanov, W. Yu, and P. Chen, "On the atomistic and kinetic nature of strained epitaxy and formation of coherent 3D island quantum boxes," Appl. Surf. Sci.123/124, 266 (1998).
29. R. Heitz, T.R. Ramachandran, A. Kalburge, Q. Xie, I. Mukhametzhanov, P. Chen and A. Madhukar, "Observation of re-entrant 2D to 3D morphology transition in highly strained epitaxy: InAs on GaAs", Phys. Rev. Lett. 78, 4071 (1997).
30. W. Yu and A. Madhukar, "Molecular dynamics study of coherent island energetics, stresses, and strains in highly strained epitaxy", Phys. Rev. Lett. 79, 905 (1997).
31. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, "In-situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001)," Appl. Phys. Lett. 68, 3299 (1996).
32. A. Madhukar, "A unified atomistic and kinetic framework for growth front morphology evolution and defect initiation in strained epitaxy," J. Cryst. Growth 163, 149 (1996).
33. W. B. Yu and A. Madhukar, "Molecular dynamics studies of surface stress in (2 x N) Gen/Si(001)," Proceedings of the 23rd Int. Conf. on the Physics of Semiconductors, (Berlin, Germany, 1996) Eds. M. Scheffler and R. Zimmermann, World Scientific, Singapore, 971 (1996).
34. W. Yu and A. Madhukar, "Molecular dynamics studies of the stress distribution in strained semiconductor nanostructures," Proceedings of the 23rd Int. Conf. on the Physics of Semiconductors, (Berlin, Germany, 1996), Eds. M. Scheffler and R. Zimmermann, World Scientific, Singapore, 1309 (1996).
35. A. Madhukar, " Semiconductor Nanostructures: Nature's Way ", in " Low dimensional systems prepared by epitaxial growth or regrowth on patterned substrates" NATO ASI Proceedings, Eds. K. Eberl, P. Demeester, and P. Petroff, (Kluwer Scientific, The Netherlands, 1995), p. 19-33.
36. Q. Xie, A. Madhukar, P. Chen, N. Kobayashi, "Vertically Self-Organized InAs quantum box islands on GaAs(100)", Phys. Rev. Lett. 75, 2542 (1995) HIGHLY CITED
37. A. Madhukar, Q. Xie, P. Chen, and A. Konkar, "Nature of strained InAs 3-dimensional island formation and distribution on GaAs(100)," Appl. Phys. Lett. 64, 2727 (1994).
38. S. Guha, A. Madhukar, and K.C. Rajkumar, "Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained InxGa1-xAs on GaAs(100), Appl. Phys. Lett. 57, 2110 (1990) HIGHLY CITED
39. S. J. Sun, Y. C. Chang, and A. Madhukar, "Effects of geometry and strain on the electronic properties of InAs/GaAs self-assembled quantum dots," Phys. Rev. B (To be published).
40. M. A. Makeev, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, "Stress field from a pyramidal InAs island in GaAs: Multimillion-atom molecular dynamics simulation study," Phys. Rev. B (Submitted).

 

 

VII. Lattice-Matched Growth on Patterned Substrates: Engineered Stress Induced
Assembly of Nanostructures (ESIAN)


1. A. Madhukar, K. C. Rajkumar, and P. Chen, "In-situ approach to realization of three-dimensionally confined structures via substrate encoded size reducing epitaxy on nonplanar patterned substrates," Appl. Phys. Lett. 62, 1547 (1993).
2. K. C. Rajkumar, K. Kaviani, P. Chen, A. Madhukar, K. Rammohan, and D. H. Rich, "One step in-situ quantum dots via molecular beam epitaxy," J. Cryst. Growth 127, 863 (1993).
3. S. Guha and A. Madhukar, "An explanation for the directionality of interfacet migration during molecular beam epitaxical growth on patterned substrates," J. Appl. Phys. 73, 8662 (1993).
4. K. C. Rajkumar, A. Madhukar, K. Rammohan, D. H. Rich, P. Chen, and L. Chen, "Optically active 3-dimensionally confined structures realized via molecular beam epitaxical growth on nonplanar GaAs(111)B," Appl. Phys. Lett. 63, 2905 (1993).
5. A. Madhukar, "Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructure synthesis," Thin Solid Films 231, 8 (1993)
6. S. Guha, A. Madhukar, K. Kaviani, L. Chen, R. Kuchibhotla, R. Kapre, M. Hyugaji and S. Xie, "Molecular beam epitaxical growth of AlxGa1-xAs on non-planar patterned GaAs (001)," Proceedings of the MRS Symposium on III-V Heterostructures for Electronic/Photonic Devices, 145, 27 (1989).

 

 

VIII. Strained Epitaxy: Defect Reduction via Growth on Patterned Substrates

1. S. Guha, A. Madhukar, and Li Chen, "Defect reduction in strained InxGa1-xAs via growth on GaAs(100) substrates patterned to submicron dimensions," Appl. Phys. Letts. 56, 2304 (1990).
2. S. Guha, A. Madhukar, L. Chen, K. C. Rajkumar, and R. Kapre, "Interfacet migration and defect formation in heteroepitaxy on patterned substrates: AlGaAs and InGaAs on GaAs(100) in MBE," SPIE Proceedings on Growth of Semiconductor Structures and High TC Superconductors, Ed. A. Madhukar, Thin Films on Semiconductors, 1285, 160 (1990).
3. R. Kapre, A. Madhukar, and S. Guha, "In0.25Ga0.75As/AlAs based resonant tunneling diodes grown on pre patterned and non patterned GaAs(100) substrates," IEEE Electr. Device L. 11, 270 (1990).
4. A. Madhukar, K. C. Rajkumar, L. Chen, S. Guha, K. Kaviani, and R. Kapre, "Realization of low defect density, ultra thick, strained InGaAs/GaAs multiple quantum well structures via growth on patterned GaAs(100) substrates," App. Phys. Letts. 57, 2007 (1990).
5. S. Guha, A. Madhukar, K. Kaviani, and R. Kapre, "Growth of InxGa1-xAs on patterned GaAs(100) substrates," J. Vac. Sci. Technol. B 8, 149 (1990).

 

 

IX. Molecular Beam Epitaxy, Growth Kinetics, Surface Chemical Reactions, & Long Range Order in Alloys


1. R. Viswanathan, A. Madhukar, and S. B. Ogale, "Role of step orientation and step-step interaction in the in-situ creation of laterally confined semiconductor nanostructures via growth: a simulated annealing study on a parallel computing platform," J. Cryst. Growth 150, 190 (1995).
2. A. Madhukar, W. Yu, R. Viswanathan, and P. Chen, "Some computer simulations of semiconductor thin film growth and strain relaxation in a unified atomistic and kinetic model," MRS Symposium Proc. 408, 413 (1995).
3. S. B. Ogale and A. Madhukar, "Adatom processes near step edges and evolution of long range order in semiconductor alloys grown from vapor phase," Appl. Phys. Lett. 60, 2095 (1992).
4. R. Viswanathan, J. Seshadri, S. Joshi, S. B. Ogale, V. C. Bhavsar, and A. Madhukar, "Molecular dynamics simulation of semiconductor surfaces on a transputer array-a performance analysis," Extended Abstract, Supercomputing Symposium (June 3-5, 1991, Canada), (1991).
5. S. B. Ogale and A. Madhukar, "Surface relaxation controlled mechanism for occurrence of long range ordering in III-V semiconductor alloys grown by molecular beam epitaxy," Appl. Phys. Lett. 59, 1356 (1991).
6. R. Viswanathan, S. Thube, S. B. Ogale, V. C. Bhavsar, and A. Madhukar, "Parallel implementations of simulated annealing for semiconductor surface relaxations on multi-transputer systems," Frontiers in Parallel Computing, Eds. V. Bhatkar, A. Basu, S. C. Purohit, and K. M. Rege, Narosa Publishing House, India, 311 (1990).
7. S. V. Ghaisas and A. Madhukar, "Nature of the oscillatory surface smoothness and its consequences during molecular beam epitaxy of strained layers: a computer simulation study," J. Appl. Phys. 65, 1888 (1989).
8. S. V. Ghaisas and A. Madhukar, "Surface kinetics and growth interruption in molecular beam epitaxy of compound semiconductors: a computer simulation study," J. Appl. Phys. 65, 3872 (1989).
9. S. V. Ghaisas and A. Madhukar, "Kinetic aspects of growth front surface morphology and defect formation during molecular beam epitaxy growth of strained thin films," J. Vac. Sci. Technol. B 7, 264 (1989).
10. S. B. Ogale and A. Madhukar, "Low energy ion beam effects on the molecular beam expitaxical growth of III-V compound semiconductors: a Monte Carlo simulation study," Appl. Phys. Lett. 55, 1115 (1989).
11. A. Madhukar and S. V. Ghaisas, "The nature of molecular beam epitaxial growth examined via computer simulations," CRC Critical Reviews in Solid State and Materials Sciences 14, 1 (1988).
12. S. V. Ghaisas and A. Madhukar, "Computer simulations of the role of surface reconstruction, stoichiometry and strain in molecular beam epitaxical growth," Proceedings of the SPIE Symposium on Growth of Advanced Semiconductor Structures, Ed. A. Madhukar, 944, 16 (1988).
13. S. V. Ghaisas and A. Madhukar, "Influence of compressive and tensile strain on growth mode during epitaxical growth: a computer simulation study," App. Phys. Lett. 53, 1599 (1988).
14. M. Thomsen and A. Madhukar, "Computer simulations of the role of group V molecular reactions at steps during the molecular beam epitaxial growth of III-V semiconductors," J. Cryst. Growth 80, 275 (1987).
15. M. Thomsen, S. V. Ghaisas, and A. Madhukar, "Examination of the nature of lattice matched III-V semiconductor interfaces using computer simulated molecular beam epitaxial growth; I. AC/BC interfaces," J. Cryst. Growth 84, 79 (1987).
16. M. Thomsen and A. Madhukar, "Examination of the nature of lattice matched III-V semiconductor interfaces using computer simulated molecular beam epitaxial growth AxB1-xC/BC interfaces, " J. Cryst. Growth 84, 98 (1987).
17. S. B. Ogale, M. Thomsen, and A. Madhukar, "Role of surface reconstruction and external ion beam in the growth kinetics of III-V molecular beam epitaxy," Proceedings of MRS Spring Symposium, 94, 83 (1987).
18. M. Y. Yen, A. Madhukar, B. F. Lewis, R. Fernandez, L. Eng, and F. J. Grunthaner, "Cross-sectional transmission electron microscope studies of GaAs/InAs(100) strain layer modulated structures grown by molecular beam epitaxy," Surf. Science 174, 606 (1986).
19. P. Chen, A. Madhukar, J. Y. Kim, and T. C. Lee, "Existence of metastable step density distributions on GaAs(100) surfaces and their consequences for molecular beam epitaxial growth," Appl. Phys. Lett. 48, 650 (1986).
20. F. Voillot, A. Madhukar, J. Y. Kim, P. Chen, N. M. Cho, W. C. Tang, and P. G. Newman, "Observation of kinetically controlled monolayer step height distribution at normal and inverted interfaces in ultrathin GaAs/AlxGa1-xAs quantum wells," Appl. Phys. Lett. 48, 1009 (1986).
21. B. F Lewis, R. F. Fernandez, A. Madhukar, and F. J. Grunthaner, "Arsenic-induced intensity oscillations in reflection high-energy electron diffraction measurements," J. Vac. Sci. Technol. B 4, 560 (1986).
22. S. V. Ghaisas and A. Madhukar, "Role of surface molecular reactions in influencing the growth mechanism and the nature of non-equilibrium surfaces: a Monte-Carlo study of molecular beam epitaxy," Phys. Rev. Lett. 56, 1066 (1986).
23. M. Y. Yen, T. C. Lee, P. Chen, and A. Madhukar, "Kinetics of the formation of normal and inverted molecular beam epitaxial interfaces: a reflection high-energy electron diffraction dynamics study of GaAs/AlxGa1-xAs(100) multiple quantum wells," J. Vac. Sci. Technol. B 4, 590 (1986).
24. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, "Kinetic processes in molecular beam epitaxy of GaAs(100) and AlAs(100) examined via static and dynamic behaviour of RHEED intensities," J. Vac. Sci. Tech. A 4, 884 (1986).
25. P. Chen, J. Y. Kim, A. Madhukar, and N. M. Cho, "Optimal surface and growth front of III-V semiconductors in MBE: a study of kinetic processes via RHEED specular beam intensity measurement on GaAs(100)," J. Vac. Sci. Tech. B 4, 890 (1986).
26. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, "The temporal behavior of RHEED intensity and implications for growth kinetics during MBE growth of GaAs/AlxGa1-xAs(100) modulated structures," Surf. Science 174, 55 (1986).
27. F. J. Grunthaner, M. Y. Yen, A. Madhukar, R. Fernandez, T. C. Lee, and B. F. Lewis, "Molecular beam epitaxial growth of GaAs/InAs multiple interface structures," App. Phys. Letts. 46, 983 (1985).
28. S. V. Ghaisas and A. Madhukar, "Monte-Carlo simulations of MBE growth of III-V semiconductors: the growth kinetics, mechanisms and consequences for the dynamics of RHEED intensity," J. Vac. Sc. Tech. B3, 540 (1985).
29. A. Madhukar and S. V. Ghaisas, "Implications of the configuration-dependent-reactive-incorporation growth process for the group V pressure and substrate temperature dependence of III-V molecular beam epitaxial growth and the dynamics of the reflection high energy electron diffraction intensity," Appl. Phys. Letts. 47, 247 (1985).
30. A. Madhukar, T. C. Lee, M. Y. Yen, P. Chen, J. Y. Kim, S. V. Ghaisas, and P. G. Newman, "Role of surface kinetics and interrupted growth during molecular beam epitaxial growth of normal and inverted GaAs/AlGaAs(100) interfaces: a reflection high energy electron diffraction intensity dynamics study," Appl. Phys. Lett. 46, 1148 (1985).
31. B. F. Lewis, F. J. Grunthaner, A. Madhukar, T. C. Lee, and R. Fernandez, "RHEED intensity behaviour during MBE growth of GaAs(100) and implications for growth kinetics and mechanisms," J. Vac. Sci. Tech. B3, 1317 (1985).
32. B. F. Lewis, T. C. Lee, F. J. Grunthaner, A. Madhukar, R. Fernandez, and J. Maserjian, "RHEED oscillation studies of kinetics and lattice mismatch strain-induced effects during InGaAs growth on GaAs(100)," J. Vac. Sci. Tech. B2, 419 (1984).
33. A. Madhukar, "Far from equilibrium vapor phase growth of lattice matched III-V compound semiconductor interfaces: some basic concepts and Monte-Carlo computer simulations," Surface Science 132, 344 (1983).
34. J. Singh and A. Madhukar, "Prediction of a kinetically controlled surface roughening: a Monte-Carlo computer simulation study," Phys. Rev. Lett. 51, 794 (1983).
35. J. Singh and A. Madhukar, "Surface orientation dependent surface kinetics and interface roughening in molecular beam epitaxial growth of III-V semiconductors: a Monte-Carlo study," J. Vac. Sci. Tech. B 1, 305 (1983).


X. Disordered Systems (Low Dimensional and Interfacial)

1. J. Singh and A. Madhukar, "A derivation for the energy dependence of the density of band tail states in disordered materials," Solid State Comm. 41, 241 (1982).
2. J. Singh and A. Madhukar, "A new method for calculating non-ideal point defect induced electronic structure: applications to GaAs1-xPx:O," Solid State Commun. 41, 947 (1982).
3. J. Singh and A. Madhukar, "Method for calculating electronic structure induced by short ranged defects in semiconductors," Phys. Rev. B 25, 7700 (1982).
4. J. Singh and A. Madhukar, "The origin and nature of Si band gap states at the Si/SiO2 interface," App. Phys. Lett. 38, 884 (1981).
5. J. Singh and A. Madhukar, "Origin of U-shaped background density of interface states at non lattice matched semiconductor interfaces," J. Vac. Sci. Technol. 19, 437 (1981).
6. F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian, and A. Madhukar, "High resolution XPS as a probe of local atomic structure: application to amorphous SiO2 and the Si/SiO2 interface," Phys. Rev. Lett. 43, 1683 (1979). HIGHLY CITED
7. A. Madhukar and M. H. Cohen, "Ideal resistivity in one dimension," Phys. Rev. Lett. 38, 85 (1977).
8. A. Madhukar and W. Post, "Exact solution for the diffusion of a particle in a medium with site diagonal and off-diagonal dynamic disorder," Phys. Rev. Lett. 39, 1424 (1977).

 

 

XI. Two Dimensional Systems

XI.A Electron Transport, Electron-Phonon Interaction, Coupled Plasmons

1. S. B. Ogale, A. Madhukar, and N. M. Cho, "Influence of transverse electric field on the photoluminescence linewidth of excitonic transition in quantum wells: alloy disorder and composition fluctuation contributions," J. Appl. Phys. 62, 1381 (1987).
2. S. B. Ogale, A. Madhukar, F. Voillot, M. Thomsen, W. C. Tang, T. C. Lee, J. Y. Kim, and P. Chen, "Atomistic nature of heterointerfaces in III-V semiconductor-based quantum-well structures and its consequences for photoluminescence behavior," Phys. Rev. B 36, 1662 (1987).
3. A. Madhukar, P. D. Lao, W. C. Tang, M. Aidan, and F. Voillot, "Observation of phonon modes through resonant mixing with electronic states in the secondary emission spectra of GaAs/Al0.32Ga0.68As single quantum well," Phys. Rev. Lett. 59, 1313 (1987).
4. S. B. Ogale and A. Madhukar, "Quantum size effect in the transport of electrons in semiconductor quantum well structures," J. App. Phys. 55, 483 (1984).
5. S. B. Ogale and A. Madhukar, "Alloy disorder scattering contribution to low temperature electron mobility in semiconductor quantum well structures," J. App. Phys. 56, 368 (1984).
6. M. Grabowski and A. Madhukar, "Theory of the transverse static magnetoconductivity in a two-dimensional electron-phonon system," Solid State Commun. 41, 29 (1982).
7. M. Grabowski and A. Madhukar, "Quantum theory of magnetotransport in two dimensional systems with electron-impurity, electron-phonon and electron-electron interactions," Surf. Sc. 113, 273 (1982).
8. B. Horovitz, M. Grabowski, and A. Madhukar, "A theory of cyclotron resonance in a two dimensional quantum Wigner crystal," Surf. Sc. 113, 318 (1982).
9. S. Das Sarma and A. Madhukar, "Collective modes of spatially separated, two-component, two-dimensional plasma in solids," Phys. Rev. B 23, 805 (1981).
10. S. Das Sarma and A. Madhukar, "Formation of an anomalous acoustic plasmon in spatially separated charged plasmas," Surf. Sci. 98, 563 (1980).
11. S. Das Sarma and A. Madhukar, "Study of the electron-phonon interactions and magneto-optical anomalies in two dimensionally confined systems," Phys. Rev. B 22, 2823 (1980).
12. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Study of the electronic structure of model (110) surfaces and interfaces of semi-infinite III-V compound semiconductors: the GaSb/InAs system," Phys. Rev. B 21, 5687 (1980).
13. A. Madhukar and S. Das Sarma, "Intrinsic and extrinsic interface states at the lattice matched interfaces between III-V compound semiconductors: the InAs/GaSb (110) system," J. Vac. Sci. Technol. 17, 1120 (1980).
14. A. Madhukar and S. Das Sarma, "Electron-phonon coupling and resonant magneto-phonon effect in optical behavior of two-dimensionally confined charge carriers," Surf. Sci. 98, 135 (1980).
15. B. Horowitz and A. Madhukar, "Electron-phonon interaction and cyclotron resonance in two dimensional electron gas," Solid State Commun. 32, 695 (1979).


XI.B Electronic Structure

1. J. Y. Kim and A. Madhukar, "Electronic structure of GaP/AlP (100) superlattices," J. Vac. Sci. Tech. 21, 528 (1982).
2. A. Madhukar and J. Delgado, "The electronic structure of Si/GaP (110) interface and superlattices," Solid State Commun. 37, 199 (1981).
3. S. Das Sarma and A. Madhukar, "Cation and anion ideal vacancy induced neutral deep levels in III-V compound semiconductors," Solid State Comm. 38, 183 (1981).
4. S. Das Sarma and A. Madhukar, "Study of the ideal-vacancy-induced neutral deep levels in III-V compound semiconductors and their ternary alloys," Phys. Rev. B 24, 2051 (1981).
5. S. Das Sarma and A. Madhukar, "Ideal vacancy induced band gap levels in lattice matched thin superlattices: the GaAs/AlAs (100) and InAs/GaSb (100) systems", J. Vac. Sci. Technol. 19, 447 (1981).
6. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Study of the electronic structure of model (110) surfaces and interfaces of semi-infinite III-V compound semiconductors: the GaSb/InAs system," Phys. Rev. B 21, 5687 (1980).
7. R. N. Nucho and A. Madhukar, "Electronic structure of SiO2 -quartz and the influence of local disorder," Phys. Rev. B 21, 1576 (1980).
8. A. Madhukar and R. N. Nucho, "The electronic structure of InAs/GaSb(001) superlattices: two dimensional effects," Solid State Commun. 32, 331 (1979).
9. N. V. Dandekar, A. Madhukar, and D. N. Lowy, "Electronic structure of semi-infinite III-V compound semiconductor surfaces and interfaces: application to InAs/GaSb(110)," J. Vac. Sci. Technol. 16, 1364 (1979).
10. D. N. Lowy and A. Madhukar, "Study of the interface electronic structure of a model metal-semiconductor interface," Phys. Rev. B 17, 3832 (1978).
11. R. N. Nucho and A. Madhukar, "Tight binding study of the electronic structure of the InAs/GaSb(001) superlattice," J. Vac. Sci. Technol. 15, 1530 (1978).
12. R. N. Nucho and A. Madhukar, "Electronic structure of -quartz and the influence of some local disorder: a tight binding study," Proceedings of the International Topical Conference on the Physics of SiO2 and its Interfaces (March 1978), Ed. S. T. Pantelides, Pergamon Press, 60 (1978).

 

XII. Transport in One Dimension (Organic conductors, Molecular Solids)

1. M. Ratner and A. Madhukar, "The role of nuclear motion in electron and excitation transfer rates," Chemical Physics 30, 201 (1978)
2. A. Madhukar and M. H. Cohen, "Ideal resistivity in one dimension," Phys. Rev. Lett. 38, 85 (1977).
149. A. Madhukar and W. Post, "Exact solution for the diffusion of a particle in a medium with site diagonal and off-diagonal dynamic disorder," Phys. Rev. Lett. 39, 1424 (1977).
3. A. Madhukar, "Theory of Peierls instability in quasi one-dimensional solids," Solid State Commun. 15, 921 (1974).
4. A. Madhukar, "Dimerisation and charge ordering in linear chain organic conductors," Chem. Phys. Lett. 27, 606 (1974).

 

XIII. Surface Science

1. M. Thomsen and A. Madhukar, "Classical description of laser-induced desorption rates," Phys. Rev. B II-35, 8131 (1987).
2. A. Madhukar, "Bonding on solid surfaces and the existence of Pauling-type functional relationships," Bull. Am. Phys. Soc. 21, 304 (1976).
3. B. Bell and A. Madhukar, "Theory of chemisorption on metallic surfaces: role of intra-adsorbate Coulomb correlations and surface structure," Phys. Rev. B 14, 4281 (1976).
4. A. Madhukar, "Chemisorption bonding and bond lengths on transition metal surfaces: effect of coordination and valency saturation," Solid State Commun. 16, 461 (1975).
5. A. Madhukar and B. Bell, "Chemisorption on transition metal surfaces: screening and polarization versus the intra-adsorbate Coulomb interaction," Phys. Rev. Lett. 34, 1631 (1975).
6. A. Madhukar, "Chemisorption on transition metal surfaces: electronic structure," Phys. Rev. B 8, 4458 (1973).


XIV. Magnetism


1. A. Madhukar and R. Hasegawa, "Mechanism for resistivity minimum in amorphous ferromagnets," Solid State Commun. 14, 61 (1974).
2. A. Madhukar, "Indirect exchange mechanism of magnetic ordering in amorphous alloys," Journal de Physique, Tome 35, C4-295 (1974).
3. A. Madhukar and R. Hasegawa, "Resistivity minimum in amorphous ferromagnets," Journal de Physique, Tome 35, C4-291 (1974).
4. A. Madhukar, "Theory of s-d exchange interaction in dilute magnetic alloys: formalism," Phys. Rev. B 7, 1116 (1973).
5. A. Madhukar, "Magnetic ordering versus lattice distortion in very narrow bands," Solid State Commun. 13, 1767 (1973).

 


Copyright © 2007 Nanostructure Materials and Devices Laboratory, USC Viterbi School of Engineering