Nanostructure Materials & Devices Laboratory


Recent and Selected Publications


I. Single Photon Source for Quantum Information Processing

II. Self-Assembled Quantum Dots and Infrared Detectors __

III. Solar Energy Conversion using Novel Hybrid Nanostuctures

IV. Biophysics, Bioengineering, and Nanomedicine
____ -Imaging of Cellular Processes
 ____-Cellular Prostheses

V. Nanoparticle Manipulation on Surfaces

Single Photon Source for Quantum Information Processing

  1. J. Zhang, S. Chattaraj, Q. Huang, L. Jordao, S. Lu, and A. Madhukar, "On chip scalable highly pure and indistinguishable single photon sources in ordered arrays: Path to Quantum Optical Circuits." Science Advances, 8.35, eabn9252 (2020). [CLICK HERE]
  2. J. Zhang, Q. Huang, L. Jordao, S. Chattaraj, S. Lu, and A. Madhukar, "Planarized spatially-regular arrays of spectrally uniform single quantum dots as on-chip single photon sources for quantum optical circuits." APL Photonics 5, 11, 116106 (2020). [CLICK HERE]
  3. S. Chattaraj, J. Zhang, S. Lu, and A. Madhukar. "On-Chip Integrated Single Photon Source-Optically Resonant Metastructure Based Scalable Quantum Optical Circuits." IEEE Journal of Quantum Electronics 56, 1, 1-9 (2019). [CLICK HERE]
  4. J. Zhang, S. Chattaraj, S. Lu, and A. Madhukar. "Highly pure single photon emission from spectrally uniform surface-curvature directed mesa top single quantum dot ordered array." Applied Physics Letters 114, 7, 071102 (2019). [CLICK HERE]
  5. Chattaraj, S., Zhang, J., Lu, S., & Madhukar, A. On-Chip Scalable Coupled Single Photon Emitter-All Dielectric Multifunctional Quantum Optical Circuits Working on a Single Collective Mie Resonance. arXiv preprint arXiv:1811.06652. (2018) [CLICK HERE]
  6. S. Chattaraj, J. Zhang, S. Lu, and A. Madhukar. "On-chip scalable coupled single photon emitter-all dielectric multifunctional quantum optical circuits working on a single collective Mie resonance." arXiv preprint arXiv:1811.06652 (2018). [CLICK HERE]
  7. S. Chattaraj, J. Zhang, S. Lu, and A. Madhukar. "Multifunctional Control of On-chip Generated Photons by a Single Collective Mode in Monolithically Integrated All-Dielectric Scalable Optical Circuits." arXiv preprint arXiv:1712.09700 (2017). [CLICK HERE]
  8. J. Zhang, S. Chattaraj, S. Lu and A. Madhukar, "Mesa-top quantum dot single photon emitter arrays: Growth, optical characteristics, and the simulated optical response of integrated dielectric nanoantenna-waveguide systems", J. Appl. Phys. 120, 243103 (2016). [CLICK HERE]
  9. J. Zhang, S. Lu, S. Chattaraj and A. Madhukar, "Triggered single photon emission up to 77K from ordered array of surface curvature-directed mesa-top GaAs/InGaAs single quantum dots", Optic Express 24, 29955(2016). [CLICK HERE]
  10. S. Chattaraj and A. Madhukar, "Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: toward on-chip integrated nanophotonics", J. Opt. Soc. Am. B, 33, 2414(2016). [CLICK HERE]
  11. J. Zhang, S. Lu, Z. Lingley and A. Madhukar, “Nanotemplate-Directed InGaAs/GaAs Quantum Dots: Towards Single Photon Emitter Arrays”, J. Vac. Sci. Technol. B, 32, 02C106 (2014). [CLICK HERE]
  12. A. Konkar, A. Madhukar, and P. Chen "Creating Three-Dimensionally Confined Nanoscale Strained Structures via Substrate Encoded Size Reducing Epitaxy and the Enhancement of Critical Thickness of Island Formation" Mat. Res. Soc. Symp. Proc v 380 (1998) [CLICK HERE]
  13. A. Konkar, A. Madhukar, and P. Chen, "Stress-engineered spatially selective self-assembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates." Applied Physics Letters 72, 220 (1998) [CLICK HERE]
  14. K.C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, D.H. Rich, "Realization of Three-Dimensionally Confined Structures via OneStep In-Situ MBE on Appropriately Patterned GaAs (111)." JVSTB 12 (2) 1071 (1994). [CLICK HERE]
  15. A. Madhukar, "Growth of semiconductor heterostructures on patterned substrates - defect reduction and nanostructures." Thin Solid Films 231, 8 (1993). [CLICK HERE]
  16. S. Guha, A. Madhukar, K. Kaviani, Li Chen, R. Kuchibholtla, R. Kapre, M. Hyugachi, Z. Xie, "Molecular Beam Epitaxical Growth of AlxGa1-xAs on Non-Planar Patterned GaAs (100)" Mat. Res. Soc. Symp. Proc. v 145 (1989)
  17. M.A. Makeev and A. Madhukar, "Stress Relaxation in Lattice-Mismatched Semiconductor Overlayers on Patterned Substrates: Atomistic Simulation Studies"in "Handbook of Semiconductor Nanostructures and Nanodevices," Eds. A.A. Balandin and K.L. Wang, American Scientific Publishers, vol X, ch. 7 (2006)
  18. Maxim A. Makeev, and Anupam Madhukar, "Calculation of Vertical Correlation Probability in Ge/Si(001) Shallow Island Quantum Dot Multilayer Systems." Nano Letters, 6 , 1279 (2006) [CLICK HERE]
  19. Maxim A. Makeev, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, and Anupam Madhukar, "Effect of geometry on stress relaxation in InAs/GaAs rectangular nanomesas: Multimillion-atom molecular dynamics simulations." Journal of Applied Physics, 98 , 114313 (2005) [CLICK HERE]
  20. M. Makeev, W. Yu, and A. Madhukar, "Atomic scale stresses and strains in Ge/Si(001) nanopixels: An atomistic simulation study." Journal of Applied Physics 96, 4429 (2004) [CLICK HERE]
  21. M. Makeev, W. Yu, and A. Madhukar, "Stress distributions and energetics in the laterally ordered systems of buried pyramidal Ge/Si(001) islands: An atomistic simulation study." Physical Review B 68, 195301 (2003) [CLICK HERE]
  22. X. Su, R.K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, "InAs/GaAs square nanomesas: Multimillion-atom molecular dynamics simulations on parallel computers." Journal of Applied Physics 94, 6762 (2003) [CLICK HERE]
  23. M. Makeev and A. Madhukar, "Large-scale atomistic simulations of atomic displacements, stresses, and strains in nanoscale mesas: Effect of mesa edges, corners, and interfaces." Applied Physics Letters 81, 3789 (2002) [CLICK HERE]
  24. M. Makeev and A. Madhukar, "Simulations of Atomic Level Stresses in Systems of Buried Ge/Si Islands." Physical Review Letters 86, 5542 (2001) [CLICK HERE]
  25. X. Su, R.K. Kalia, A. Nakano, P. Vashishta, A. Madhukar, "Million-atom molecular dynamics simulation of flat InAs overlayers with Self-limiting thickness on GaAs square nanomesas." Applied Physics Letters 78, 3717 (2001) [CLICK HERE]
  26. X. Su, R.K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, "Critical lateral size for stress domain formation in InAs/GaAs square nanomesas: A multimillion-atom molecular dynamics study." Applied Physics Letters 79, 4457 (2001) [CLICK HERE]
  27. W. Yu and A. Madhukar, "Molecular Dynamics Study of Coherent Island Energetics, Stresses, and Strains in Highly Strained Epitaxy" Physical Review Letters 79, 905 (1997) [CLICK HERE]
  28. A. Madhukar, W. Yu, R. Viswanathan, and P. Chen, "Some Computer Simulations of Semiconductor Thin Film Growth and Strain Relaxation in a Unified Atomistic and Kinetic Model. Mat. Res. Soc. Symp. Proc. v 408 (1996)



Self-Assembled Quantum Dots

1. Anupam Madhukar, "Stress Engineered Quantum dots: Nature's Way," in "Nano Optoelctronics: Concepts, Physics, and Devices", Ed. M. Grundmann, Springer-Verlag, (Berline 2002).

2. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar, "Punctuated island growth: An approach to examination and control of quantum dot density, size, and shape evolution." Applied Physics Letters 75, 85 (1999) [CLICK HERE]

3. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, "Enhanced Polar Exciton-LO-Phonon Interaction in Quantum Dots." Physical Review Letters 83, 4654 (1999) [CLICK HERE]

4. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, "Independent manipulation of density and size of stress-driven self-assembled quantum dots." Applied Physics Letters 73, 1841 (1998) [CLICK HERE]

5. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, "Excitation transfer in self-organized asymmetric quantum dot pairs."
Physical Review B 58, R10151 (1998) [CLICK HERE]

6.Anupam Madhukar, "A unified atomistic and kinetic framework for growth front morphology evolution and defect initiation in strained epitaxy." Journal of Crystal Growth 163, 149 (1996) [CLICK HERE]

7. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs(001)." IEEE Photonics Technology Letters 8, 965 (1996) [CLICK HERE]

8. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, "In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001)" Applied Physics Letters 68, 3299 (1996) [CLICK HERE]

9. Q. Xie, A. Madhukar, P. Chen, and N. Nobayashi "Vertically Self-Organized InAs Quantum Box Islands on GaAs (100)"
Physical Review Letters 75, 2542 (1995) [HIGHLY CITED! CLICK HERE]

10. Q. H. Xie, P. Chenl, A. Madhukar, "InAs island-induced-strain driven adatom migration during GaAs overlayer growth." Applied Physics Letters 65, 2051 (1994). [CLICK HERE]


Quantum Dot Infrared Detectors

1. T. Asano, C. Hu, Y. Zhang, M. Liu, J.C. Campbell, and A. Madhukar, "Design Consideration and Demonstration of Resonant-Cavity-Enhanced Quantum Dot Infrared Photodetectors in Mid-Infrared Wavelength Regime (3-5 micron)." IEEE J. of Quantum Electronics, 46, 1484 (2010) [CLICK HERE]

2. T. Asano, Z. Fang, and A. Madhukar, "Deep levels in GaAs(001)/InAs/InGaAs/GaAs self-assembled quantum dot structures and their effect of quantum dot devides." J. of Applied Physics, 107, 073111 (2010) [CLICK HERE]

3. T. Asano, A. Madhukar, K. Mahalingham, G.J. Brown, "Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures fro infrared detectors" J. Appl. Phys, 104, 113115 (2008) [CLICK HERE]

4. J. C. Campbell and A. Madhukar, "Quantum Dot Infrared Detectors." IEEE Quantum Electronics, 95 (2007) [CLICK HERE]

5. Anupam Madhukar and Joe C. Campbell, "Quantum Dot Infrared Detectors" in "Semiconductor Nanostructures for Optoelectronic Applications". Ed. T. Steiner, Artec House Inc. (Norwood, MA) ch. 3. (2004)

6. Z. Ye, J.C. Campbell, Z. Chen, E.T. Kim, and A. Madhukar, "Noise and photoconductive gain in InAs quantum-dot infrared photodetectors." Applied Physics Letters 83, 1234 (2003) [CLICK HERE]

7. E.T. Kim, Z. Chen, and A. Madhukar, "Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer." Applied Physics Letters 81, 3473 (2002) [CLICK HERE]

8. E.T. Kim, Z. Chen, M. Ho, and A. Madhukar, "Tailoring mid- and long-wavelength dual response of InAs quantum-dot infrared photodetectors using InxGa1-xAs capping layers" Journal of Vacuum Science and Technology B 20, 1188 (2002) [CLICK HERE]

9. Z. Ye, J.C. Campbell, Z. Chen, E.T. Kim, and A. Madhukar, "Voltage-controllable multiwavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection." Journal of Applied Physics 92, 4141 (2002) [CLICK HERE]

10. Z. Ye, J.C. Campbell, Z. Chen, E.T. Kim, and A. Madhukar, "Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity." IEEE Journal of Quantum Electronics 38 1234, (2002) [CLICK HERE]

11. Z.H. Chen, O. Baklenov, E.T. Kim, I. Mukhametzhanov, J. Tie, A. Madhukar, Z. Ye, and J.C. Campbell, "InAs/AlxGa1-xAs quantum dot infrared photodetectors with undoped active region" Infrared Physics and Technology 42, 479 (2001) [CLICK HERE]

12. E.T. Kim, Z. Chen, and A. Madhukar, "Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1-xAs strain-relieving quantum wells." Applied Physics Letters 79, 3341 (2001) [CLICK HERE]


Solar Energy Conversion using Novel Hybrid Nanostuctures

1. Z. Lingley, S. Lu, and A. Madhukar "The dynamics of energy and charge transfer in lead sulfide quantum dot solids", Journal of Applied Physics, 115, 084302 (2014) [CLICK HERE]

2. Z. Lingley, K. Mahalingam, S. Lu, G. J. Brown and A. Madhukar "Nanocrystal - Semiconductor Interface: Atomic-Resolution Cross-Sectional Transmission Electron Microscope Study of Lead Sulfide Nanocrystal Quantum Dots on Crystalline Silicon", Nano Research, 7, 219-227 (2014). [CLICK HERE]

3. Z. Lingley, S. Lu. and A. Madhukar, "A High Quantum Efficiency Preserving Approach to Ligand Exchange on Lead Sulfide Quantum Dots and Interdot Resonant Energy Transfer" Nano Lett., 11, 2887-2891 (2011) [CLICK HERE]

4. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, " Photocurrent Induced by Nonradiative Energy Transfer from Nanocrystal Quantum Dots to Adjacent Silicon Nanowire Conducting Channels: Towards a New Solar Cell Paradigm" Nano Lett., 9 , 4548-4552 (2009) [CLICK HERE]

5. S. Lu and A. Madhukar, "Nonradiative Resonant Excitation Transfer from Nanocrystal Quantum Dots to Adjacent Quantum Channels". Nano Letters, 7 (11), 3443 (2007) [CLICK HERE]

6. A. Madhukar, S. Lu, A. Konkar, Y. Zhang, M. Ho, S. M. Hughes and A. P.Alivisatos, "Integrated Semiconductor Nanocrystal and Epitaxical Nanostructure Systems: Structural and Optical Behavior." Nano Letters, 5 , 479 (2005) [CLICK HERE]

7. A. Konkar, S. Lu, A. Madhukar, S. M. Hughes and A. P. Alivisatos, "Semiconductor Nanocrystal Quantum Dots on Single Crystal Semiconductor Substrates: High Resolution Transmission Electron Microscopy." Nano Letters, 5 , 969 (2005) [CLICK HERE]


Biophysics, Bioengineering, and Nanomedicine: Imaging of Intracellular Dynamics and Cellular Prostheses

1. S. Lu and A. Madhukar, “Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses”, Nanomedicine Nanotechnology, Biology, and Medicine, 9, 293-301(2013).[CLICK HERE]

2. J. K. Lee, S. Lu, and A. Madhukar, "Real-Time Dynamics of Ca2+, Caspase-3/7, and Morphological Changes in Retinal Ganglion Cell Apoptosis under Elevated Pressure." PLoS ONE, 5, e13437 (2010) [CLICK HERE]

3. S. Lu and A. Madhukar, "Cellular prostheses: functional abiotic nanosystems to proble, manipulate, and endow functions in live cells." Nanomedicine: Nanotechnoloty, Biology, and Medicine, 6, 409-418 (2010) [CLICK HERE]

4. Siyuan Lu, Anubhuti Bansal, Walid Soussou, Theodore W. Berger, and Anupam Madhukar, "Receptor-Ligand-Based Specific Cell Adhesion on Solid Surfaces: Hippocampal Neuronal Cells on Bilinker Functionalized Glass." Nano Letters, 6 , 1977 (2006) [CLICK HERE]


Nanoparticle Manipulation on Surfaces

1. S. Meltzer, R. Resch, B.E. Koel, M.E. Thompson, A. Madhukar, A.A.G. Requicha, and P. Will, "Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates." Langmuir 17, 1713 (2001) [CLICK HERE]

2. Roland Resch, Christof Baur, Alejandro Bugacov, Bruce E. Koel, Pierre M. Echternach, Anupam Madhukar, Nicolas Montoya, Aristides A. G. Requicha, and Peter Will, "Linking and Manipulation of Gold Multinanoparticle Structures Using Dithiols and Scanning Force Microscopy." Journal of Physical Chemistry B 103, 3647 (1999) [CLICK HERE]

3. T R Ramachandran, C Baur, A Bugacov, A Madhukar, B E Koel, A Requicha and C Gazen, "Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope." Nanotechnology 9, 237 (1998) [CLICK HERE]


Back to TOP