I. SelfAssembled Semiconductor
Epitaxical Nanostructure for Electronics/Optoelectronics
I.1 (a) Atomic Scale Understanding
of Heteroepitaxy
I.1 (b) Growth Controlled SelfAssembly of Nanostructures
I.2 Electronic Structure and Response
I.3 Devices
___________________________________________________________________________________
I. SelfAssembled Semiconductor Epitaxical Nanostructure for Electronics/Optoelectronics
I.1 (a) Atomic Scale Understanding of Heteroepitaxy
(i) Homoepitaxy: Fundamentals of MBE Growth; KMC and RHEED
Kinetic MonteCarlo Computer Simulations:
1. A. Madhukar, "Far from equilibrium vapor phase growth of lattice matched IIIV
compound semiconductors interfaces: some basic concepts and MonteCarlo computer
simulations," Surface Science 132, 344 (1983).
2. J. Singh and A. Madhukar, "Prediction of a kinetically controlled surface roughening:
a MonteCarlo computer simulation study," Phys. Rev. Lett. 51, 794 (1983).
3. J. Singh and A. Madhukar, "Surface orientation dependent surface kinetics and
interface roughening in molecular beam epitaxial growth of IIIV semiconductors:
a MonteCarlo study," J. Vac. Sci. Tech. B 1, 305 (1983).
4. S. V. Ghaisas and A. Madhukar, "MonteCarlo simulations of MBE growth of IIIV
semiconductors: the growth kinetics, mechanisms and consequences for the dynamics
of RHEED intensity," J. Vac. Sc. Tech. B 3, 540 (1985).
5. A. Madhukar and S. V. Ghaisas, "Implications of the configurationdependentreactiveincorporation
growth process for the group V pressure and substrate temperature dependence of
IIIV molecular beam epitaxial growth and the dynamics of the reflection high
energy electron diffraction intensity," Appl. Phys. Letts. 47, 247 (1985).
6. S. V. Ghaisas and A. Madhukar, "Role of surface molecular reactions in influencing
the growth mechanism and the nature of nonequilibrium surfaces: a MonteCarlo
study of molecular beam epitaxy," Phys. Rev. Lett. 56, 1066 (1986).
7. M. Thomsen and A. Madhukar, "Computer simulations of the role of group V molecular
reactions at steps during the molecular beam epitaxial growth of IIIV semiconductors,"
J. Cryst. Growth 80, 275 (1987).
RHEED Studies:
8. B. F. Lewis, F. J. Grunthaner, A. Madhukar, T. C. Lee, and R. Fernandez, "RHEED
intensity behaviour during MBE growth of GaAs(100) and implications for growth
kinetics and mechanisms," J. Vac. Sci. Tech. B3, 1317 (1985).
9. P. Chen, A. Madhukar, J. Y. Kim, and T. C. Lee, "Existence of metastable step
density distributions on GaAs(100) surfaces and their consequences for molecular
beam epitaxial growth," Appl. Phys. Lett. 48, 650 (1986).
10. B. F Lewis, R. F. Fernandez, A. Madhukar, and F. J. Grunthaner, "Arsenicinduced
intensity oscillations in reflection highenergy electron diffraction measurements,"
J. Vac. Sci. Technol. B 4, 560 (1986).
11. P. Chen, J. Y. Kim, A. Madhukar, and N. M. Cho, "Optimal surface and growth
front of IIIV semiconductors in MBE: a study of kinetic processes via RHEED specular
beam intensity measurement on GaAs(100)," J. Vac. Sci. Tech. B 4, 890 (1986).
12. S. B. Ogale, M. Thomsen, and A. Madhukar, "Surface kinetic processes and the
morphology of equilibrium GaAs(100) surfaces: a Monte Carlo study," Appl. Phys.
Lett. 52, 723 (1988).
13. P. Chen, K. C. Rajkumar, and A. Madhukar, "Growth control of GaAs epilayers
with specular surface free of pyramids and twins on nonmisoriented (111)B substrates,"
Appl. Phys. Lett. 58, 1771 (1991).
14. P. Chen, K. C. Rajkumar, and A. Madhukar, "Relation between reflection high
energy electron diffraction specular beam intensity and the surface atomic structure
surface morphology of GaAs(111)B," J. Vac. Sci. Technol. B 9, 2312 (1991).
Back to Top
(ii) Heteroepitaxy: Lattice Matched
KMC
15. M. Thomsen, S. V. Ghaisas, and A. Madhukar, "Examination of the nature of
lattice matched IIIV semiconductor interfaces using computer simulated molecular
beam epitaxial growth; I. AC/BC interfaces," J. Cryst. Growth 84, 79 (1987).
16. M. Thomsen and A. Madhukar, "Examination of the nature of lattice matched
IIIV semiconductor interfaces using computer simulated molecular beam epitaxial
growth AxB1xC/BC interfaces, " J. Cryst. Growth 84, 98 (1987).
17. A. Madhukar and S. V. Ghaisas, "The nature of molecular beam epitaxial growth
examined via computer simulations," CRC Critical Reviews in Solid State and Materials
Sciences, Vol. 14, pages1131, (1988).
RHEED/PL
18. A. Madhukar, T. C. Lee, M. Y. Yen, P. Chen, J. Y. Kim, S. V. Ghaisas, and
P. G. Newman, "Role of surface kinetics and interrupted growth during molecular
beam epitaxial growth of normal and inverted GaAs/AlGaAs(100) interfaces: a reflection
high energy electron diffraction intensity dynamics study," Appl. Phys. Lett. 46, 1148 (1985).
19. F. Voillot, A. Madhukar, J. Y. Kim, P. Chen, N. M. Cho, W. C. Tang, and P.
G. Newman, "Observation of kinetically controlled monolayer step height distribution
at normal and inverted interfaces in ultrathin GaAs/AlxGa1xAs quantum wells,"
Appl. Phys. Lett. 48, 1009 (1986).
20. M. Y. Yen, T. C. Lee, P. Chen, and A. Madhukar, "Kinetics of the formation
of normal and inverted molecular beam epitaxial interfaces: a reflection highenergy
electron diffraction dynamics study of GaAs/AlxGa1xAs(100) multiple quantum wells,"
J. Vac. Sci. Technol. B 4, 590 (1986).
21. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, "The temporal behavior of
RHEED intensity and implications for growth kinetics during MBE growth of GaAs/AlxGa1xAs(100)
modulated structures," Surf. Science 174, 55 (1986).
22. J. Y. Kim, F. Voillot, P. Chen, A. Madhukar, N. M. Cho, and W. C. Tang, "A
photoluminescence study of GaAs/AlxGa1xAs (100) single quantum wells grown via
MBE under RHEED determined optimized growth conditions for continuous and interrupted
growth," Jour. Elec. Materials 15, 317 (1986).
23. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, "Kinetic processes in molecular
beam epitaxy of GaAs(100) and AlAs(100) examined via static and dynamic behaviour
of RHEED intensities," J. Vac. Sci. Tech. A 4, 884 (1986).
24. P. Chen, A. Madhukar, J. Y. Kim, and N. M. Cho, "The nature of surface migration
during MBE growth of IIIV compounds: a study via the RHEED specular beam intensity
dynamics," Proceedings of the 18th International Conference of Physics of Semiconductors,
(Aug. 1115, 1986, Stockholm, Sweden) Ed. Olof Engstrom, World Scientific Press,
Singapore 1, 109 (1987).
25. F. Voillot, J. Y. Kim, W. C. Tang, A. Madhukar, and P. Chen, "Near bandedge
luminescence studies of the effect of interfacial step distribution and alloy
disorder in ultrathin GaAs/AlxGa1xAs(100) single quantum wells grown by MBE under
RHEED determined condition," Superlattices and Microstructures 3, 313 (1987).
26. J. Y. Kim, P. Chen, F. Voillot, and A. Madhukar, "Photoluminescence and reflection
high energy electron diffraction dynamics study of the interfaces in molecular
beam epitaxially grown GaAs/Al0.33Ga0.67As (100) single quantum wells," Appl.
Phys. Lett. 50, 739 (1987).
27. N. M. Cho, P. Chen, and A. Madhukar, "Specular beam intensity behavior in
reflection high energy electron diffraction during molecular beam epitaxial growth
of Al0.3Ga0.7As on GaAs(100) and implications for inverted interfaces," Appl.
Phys. Lett. 50, 1909 (1987).
28. A. Madhukar, P. Chen, F. Voillot, M. Thomsen, J. Y. Kim, W. C. Tang, and S.
V. Ghaisas, "A combined computer simulation, RHEED intensity dynamics and photoluminescence
study of the surface kinetics controlled interface formation in MBE grown GaAs/AlxGa1xAs(100)
quantum well structures," J. Cryst. Growth 81, 26 (1987).
29. F. Voillot, A. Madhukar, W. C. Tang, M. Thomsen, J. Y. Kim, and P. Chen, "Growth
kinetics of MBE grown GaAs/Al0.3Ga0.7As (100) normal and inverted interfaces in
thin single quantum well structures examined via photoluminescence studies," Appl.
Phys. Lett. 50, 194 (1987).
30. S. B. Ogale, A. Madhukar, F. Voillot, M. Thomsen, W. C. Tang, T. C. Lee, J.
Y. Kim, and P. Chen, "Atomistic nature of heterointerfaces in IIIV semiconductorbased
quantumwell structures and its consequences for photoluminescence behavior,"
Phys. Rev. B 36, 1662 (1987).
Back to Top
(iii) Heteroepitaxy: Lattice Mismatched (Strained)
31. B. F. Lewis, T. C. Lee, F. J. Grunthaner, A. Madhukar, R. Fernandez, and J.
Maserjian, "RHEED oscillation studies of kinetics and lattice mismatch straininduced
effects during InGaAs growth on GaAs(100)," J. Vac. Sci. Tech. B 2, 419
(1984).
32. F. J. Grunthaner, A. Madhukar, B. Lewis, M. Y. Yen, T. C.
Lee, and R. Fernandez, "Control of interface morphology in MBE growth of InAs/GaAs
superlattices by RHEED intensity measurement," Proceedings of the International
Conference on Superlattices (Aug. 1984, Urbana, IL).
33. F. J. Grunthaner, M. Y. Yen, A. Madhukar, R. Fernandez, T. C. Lee, and B.
F. Lewis, "Molecular beam epitaxial growth of GaAs/InAs multiple interface structures,"
App. Phys. Letts. 46, 983 (1985).
34. M. Y. Yen, A. Madhukar, B. F. Lewis, R. Fernandez, L. Eng, and F. J. Grunthaner,
"Crosssectional transmission electron microscope studies of GaAs/InAs(100) strain
layer modulated structures grown by molecular beam epitaxy," Surf. Science 174,
606 (1986).
35. S. Guha, A. Madhukar, and Li Chen, "Defect reduction in strained InxGa1xAs
via growth on GaAs(100) substrates patterned to submicron dimensions," Appl. Phys.
Letts. 56, 2304 (1990).
36. A. Madhukar, K. C. Rajkumar, L. Chen, S. Guha, K. Kaviani, and R. Kapre, "Realization
of low defect density, ultra thick, strained InGaAs/GaAs multiple quantum well
structures via growth on patterned GaAs(100) substrates," App. Phys. Letts. 57,
2007 (1990).
KMC Simulations of Strained Epitaxy
37. S. V. Ghaisas and A. Madhukar, "Computer simulations of the role of surface
reconstruction, stoichiometry and strain in molecular beam epitaxical growth,"
Proceedings of the SPIE Symposium on Growth of Advanced Semiconductor Structures,
(1318 March, 1988, Newport Beach Marriott Hotel, CA), Ed. A. Madhukar, 944,
16.
38. S. V. Ghaisas and A. Madhukar, "Influence of compressive and tensile strain
on growth mode during epitaxical growth: a computer simulation study," App. Phys.
Lett. 53, 1599 (1988).
39. S. V. Ghaisas and A. Madhukar, "Nature of the oscillatory surface smoothness
and its consequences during molecular beam epitaxy of strained layers: a computer
simulation study," J. Appl. Phys. 65, 1888 (1989).
40. S. V. Ghaisas and A. Madhukar, "Surface kinetics and growth interruption in
molecular beam epitaxy of compound semiconductors: a computer simulation study,"
J. Appl. Phys. 65, 3872 (1989).
41. S. V. Ghaisas and A. Madhukar, "Kinetic aspects of growth front surface morphology
and defect formation during molecular beam epitaxy growth of strained thin films,"
J. Vac. Sci. Technol. B 7, 264 (1989).
InSitu STM / AFM studies of Evolution of InAs islands on GaAs(001):
42. T. R. Ramachandran, R. Heitz, P. Chen, and A. Madhukar, "Mass transfer in
StranskiKrastanow growth of InAs on GaAs," Appl. Phys. Lett. 70, 640 (1997).
43. R. Heitz, T. R. Ramachandran, A. Kalburge, Q. Xie, I. Mukhametzhanov, P. Chen,
and A. Madhukar, "Observation of reentrant 2D to 3D morphology transition in
highly strained epitaxy: InAs on GaAs," Phys. Rev. Lett. 78, 4071 (1997).
44. T. R. Ramachandran, R. Heitz, N. P. Kobayashi, A. Kalburge, W. Yu, P. Chen,
and A. Madhukar, "Reentrant behavior of 2D to 3D morphology change and 3D island
lateral size equalization via mass exchange in StranskiKrastanow growth: InAs
on GaAs (001)," J. Cryst. Growth 175, 216 (1997).
45. T. R. Ramachandran, N. P. Kobayashi, P. Chen, and A. Madhukar, The formation
and evolution of InAs 3D islands on GaAs(001) and a comparative CAFM and NCAFM
study of InAs 3D islands, MRS Proc. 440, 31 (1997).
Back to Top
I.1 (b) Growth Controlled SelfAssembly of Nanostructures
(i) Lattice Matched Systems: Patterned Substrates
46. S. Guha, A. Madhukar, K. Kaviani, L. Chen, R. Kuchibhotla, R. Kapre, M. Hyugaji
and S. Xie, "Molecular beam epitaxical growth of AlxGa1xAs on nonplanar patterned
GaAs (001)," Proceedings of the MRS Symposium on IIIV Heterostructures for Electronic/Photonic
Devices, 145, 27 (1989).
47. S. Guha, A. Madhukar, L. Chen, K. C. Rajkumar, and R. Kapre, "Interfacet migration
and defect formation in heteroepitaxy on patterned substrates: AlGaAs and InGaAs
on GaAs(100) in MBE," SPIE Proceedings on Growth of Semiconductor Structures and
High TC Superconductors, Ed. A. Madhukar, Thin Films on Semiconductors, 1285,
160 (1990).
48. K. C. Rajkumar, K. Kaviani, J. Chen, P. Chen, A. Madhukar, and D. H. Rich,
"Insitu approach to realization of threedimensionally confined structures on
patterned GaAs(111)B substrates," MRS Proceed 263, 163 (1992).
49. K. C. Rajkumar, K. Kaviani, P. Chen, A. Madhukar, K. Rammohan, and D. H. Rich,
"One step insitu quantum dots via molecular beam epitaxy," J. Cryst. Growth 127,
863 (1993).
50. A. Madhukar, K. C. Rajkumar, and P. Chen, "Insitu approach to realization
of threedimensionally confined structures via substrate encoded size reducing
epitaxy on nonplanar patterned substrates," Appl. Phys. Lett. 62, 1547
(1993).
51. S. Guha and A. Madhukar, "An explanation for the directionality of interfacet
migration during molecular beam epitaxical growth on patterned substrates," J.
Appl. Phys. 73, 8662 (1993).
52. K. C. Rajkumar, A. Madhukar, K. Rammohan, D. H. Rich, P. Chen, and L. Chen,
"Optically active 3dimensionally confined structures realized via molecular beam
epitaxical growth on nonplanar GaAs(111)B," Appl. Phys. Lett. 63, 2905
(1993).
53. A. Madhukar, "Growth of semiconductor heterostructures on patterned substrates:
defect reduction and nanostructure," Thin Solid Films 231, 8 (1993)
54. K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and
D. H. Rich, "Realization of 3dimensionally confined structures via onestep insitu
molecular beam epitaxy on appropriately patterned GaAs(111)," J. Vac. Sci. Technol.
B 12, 1071 (1994).
55. A. Konkar, K. C. Rajkumar, Q. Xie, P. Chen, A. Madhukar, H. T. Lin, and D.
H. Rich, Insitu fabrication of 3dimensionally confined GaAs and InAs volumes
via growth on nonplanar patterned GaAs(001) substrates, J. Cryst. Growth 150,
311 (1995).
56. A. Konkar, A. Madhukar, and P. Chen, Creating 3D confined nanoscale strained
structures via substrate encoded sizereducing epitaxy and the enhancement of
critical thickness for island formation, Paper presented at MRS Spring 95 Meeting
(April 1721, 1995, San Francisco, CA), MRS Symposium Proc. 380, 17 (1995).
57. A. Konkar, H. T. Lin, D. H. Rich, P. Chen, and A. Madhukar, Growth controlled
fabrication and cathodoluminescence study of 3D confined GaAs volumes on nonplanar
patterned GaAs(001) substrates, J. Crys. Growth 175, 741 (1997).
58. D. H. Rich, H. T. Lin, A. Konkar, P. Chen, and A. Madhukar, "Cathodoluminescence
study of band filling and carrier thermalization in GaAs/AlGaAs quantum boxes,"
J. Appl. Phys. 81, 1781 (1997).
59. H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, "Carrier relaxation
and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed
with timeresolved cathodoluminescence," J. Appl. Phys. 81, 3186 (1997).
60. A. Kalburge, A. Konkar, T. R. Ramachandran, P. Chen, and A. Madhukar, "Focused
ion beam assisted chemically etched mesas on GaAs(001) and the nature of subsequent
molecular beam epitaxial growth," J. Appl. Phys. 82, 859 (1997).
Back to Top
(ii) Lattice Mismatched Epitaxy: Strained Coherent Islands (SelfAssembled Quantum Dots)
61. S. Guha, A. Madhukar, and K.C. Rajkumar, "Onset of incoherency and defect
introduction in the initial stages of molecular beam epitaxical growth of highly
strained InxGa1xAs on GaAs(100), Appl. Phys. Lett. 57, 2110 (1990).
62. A. Madhukar, Q. Xie, P. Chen, and A. Konkar, "Nature of strained InAs 3dimensional
island formation and distribution on GaAs(100)," Appl. Phys. Lett. 64,
2727 (1994).
63. P. Chen, Q. Xie, A. Madhukar, L. Chen, and A. Konkar, "Mechanisms of strained
island formation in molecular beam epitaxy of InAs on GaAs(100)," PCSI Proceedings,
Jan. 2428, 1994 Meeting, Mohonk, NY, J. Vac. Sci. Technol. B 12, 2568
(1994).
64. Q. H. Xie, P. Chen, and A. Madhukar, InAs islandinducedstrain driven adatom
migration during GaAs overlayer growth, Appl. Phys. Lett. 65 (16), 2051
(1994).
65. Q. Xie, A. Konkar, A. Kalburge, T. R. Ramachandran, P. Chen, R. Cartland,
A. Madhukar, H. T. Lin, and D. H. Rich, Structural and optical behaviour of strained
InAs quantum boxes grown on planar and patterned GaAs(100) substrates by molecular
beam epitaxy, J. Vac. Sci. Technol. B 13, 642 (1995).
66. Q. Xie, P. Chen, A. Kalburge, T. R. Ramachandran, A. Nayfanov, A. Konkar,
and A. Madhukar, Realization of optically active strained InAs island quantum
boxes on GaAs(100) via molecular beam epitaxy and the role of island induced strain
fields, J. Cryst. Growth 150, 357 (1995).
67. A. Madhukar, P. Chen, Q.
Xie, A. Konkar, T. R. Ramachandran, N. P. Kobayashi, and R. Viswanathan, Semiconductor
nanostructures: natures way, Proc. NATO Advanced Research Workshop, Feb.2024,
1995, Ringberg Castle (Germany), Eds. K. Eberl, P. Demecster, and P. Petroff,
Low Dimensional Structures prepared by Epitaxial Growth or Regrowth on Patterned
Substrates, (Kluwer Academic Publishers, The Netherlands, 1995), 19 (1995).
68. Q. H. Xie, N. P. Kobayashi, T. R. Ramachandran, A. Kalburge, P. Chen, and
A. Madhukar, InAs island quantum box formation and vertical selforganization
on GaAs(100) via molecular beam epitaxy, Paper presented at MRS Spring 95 Meeting
(April 1721, 1995, San Francisco, CA), MRS Symp. Proc. 379, 177 (1995).
69. Q. H. Xie, A. Madhukar, P. Chen, and N. Kobayashi, Vertically selforganized
InAs quantum box islands on GaAs(100), Phys. Rev. Lett. 75, 2542 (1995).
70. Q. H. Xie, N. P. Kobayashi, T. R. Ramachandran, A. Kalburge, P. Chen, and
A. Madhukar, Strained coherent InAs quantum box islands on GaAs(100): size equalization,
vertical selforganization, and optical properties, J. Vac. Sci. Technol. B 14,
2203 (1996).
71. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, Insitu, atomic
force microscope studies of the evolution of InAs threedimensional islands on
GaAs(001), Appl. Phys. Lett. 68, 3299 (1996).
72. T. R. Ramachandran, A. Madhukar, I. Mukhametzhanov, R. Heitz, A. Kalburge,
Q. Xie, and P. Chen, Nature of StranskiKrastanow growth of InAs on GaAs(001),
J. Vac. Sci. Technol. B 16, 1330 (1998).
73. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, Independent
manipulation of density and size of stressdriven self assembled quantum dots,
Appl. Phys. Lett. 73, 1841 (1998).
74. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Excitation transfer
in selforganized asymmetric quantumdot pairs, Phys. Rev. B 58, R10151
(1998).
75. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar, Punctuated island growth:
an approach to examination and control of quantum dot density, size, and shape
evolution, Appl. Phys. Lett. 75, 85 (1999).
76. E. T. Kim, Z. H. Chen, and A. Madhukar, Tailoring detection bands of InAs
quantumdot infrared photodetectors using InxGa1xAs strainrelieving quantum
wells, Appl. Phys. Lett. 79, 3341 (2001).
77. E.T. Kim, Z. Chen, and A. Madhukar, Selective manipulation of InAs quantum
dot electronic states using a lateral potential confinement layer, Appl. Phys.
Lett. 81, 3473 (2002).
Molecular Dynamics Simulations of Stress/Strain in SAQD systems
78. W. B. Yu and A. Madhukar, Molecular dynamics studies of surface stress
in (2 x N) Gen/Si(001), Proc. of the 23rd Int. Conf. on the Physics of Semiconductors,
(Berlin, Germany, 1996) Eds. M. Scheffler and R. Zimmermann, World Scientific,
Singapore, 971 (1996).
79. W. Yu and A. Madhukar, Molecular dynamics studies of
the stress distribution in strained semiconductor nanostructures, Proc. of the
23rd Int. Conf. on the Physics of Semiconductors, (Berlin, Germany, 1996), Eds.
M. Scheffler and R. Zimmermann, World Scientific, Singapore, 1309 (1996).
80. W. B. Yu and A. Madhukar, "Molecular dynamics study of coherent island energetics,
stresses, and strains in highly strained epitaxy," Phys. Rev. Lett. 79,
905 (1997).
81. M. A. Makeev and A. Madhukar, Simulations of atomic level stresses in systems
of buried Ge/Si islands, Phys. Rev. Lett. 86, 5542 (2001).
82. M. A. Makeev and A. Madhukar, Stress and strain fields from an array of spherical inclusions in
semiinfinite elastic media: Ge nanoinclusions in Si, Phys. Rev. B, (In Press).
83. M. A. Makeev, W. Yu, and A. Madhukar, Stress distributions and energetics
in the laterally ordered systems of buried pyramidal Ge/Si(001) islands: An atomistic
simulation study, Phys. Rev. B, (Submitted).
Back to Top
(iii) LateralOrdering of Highly Strained Island Quantum Dots through SESRE
84. A. Konkar, K. C. Rajkumar, Q. Xie, P. Chen, A. Madhukar, H. T. Lin, and D.
H. Rich, Insitu fabrication of 3dimensionally confined GaAs and InAs volumes
via growth on nonplanar patterned GaAs(001) substrates, J. Cryst. Growth 150,
311 (1995).
85. A. Konkar, A. Madhukar, and P. Chen, Creating 3D confined nanoscale strained
structures via substrate encoded sizereducing epitaxy and the enhancement of
critical thickness for island formation, Paper presented at MRS Spring 95 Meeting
(April 1721, 1995, San Francisco, CA), MRS Symposium Proc. 380, 17 (1995).
86. A. Konkar, A. Madhukar, and P. Chen, "Stressengineered spatially selective
selfassembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates,"
Appl. Phys. Lett. 72, 220 (1998).
87. A. Konkar, R. Heitz, T. R. Ramachandran, P. Chen, and A. Madhukar, Fabrication
of strained InAs island ensembles on nonplanar patterned GaAs (001) substrates,
J. Vac. Sci. Technol. B 16, 3 (1998).
88. X. Su, R. K. Kalia, A. Madhukar, A. Nakano, and P. Vashishta, Multimillion
atom simulation of atomiclevel surface stresses on InAs/GaAs nanomesas, Proc.
of MRS Symposium, Fall 1999, 548, 269 (2000).
89. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, Millionatom
molecular dynamics simulation of flat InAs overlayers with selflimiting thickness
on GaAs square nanomesas, Appl. Phys. Lett. 78, 3717 (2001).
90. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, Critical
lateral size for stress domain formation in InAs/GaAs square nanomesas: a multimillionatom
molecular dynamics study, Appl. Phys. Lett. 79, 4577 (2001).
91. M. A. Makeev, (To be published)
92. X. T. Su, APL (2003)
Back to Top
I.2 Electronic Structure and Response
(i) Quantum Wells: Transport, MagnetoTransport, MagnetoOptics, & Collective Behavior (Plasmons)
1. A. Madhukar, "Resonant
Landau leveloptical phonon interaction in twodimensionally confined charge carrier
systems," Theoretical Aspects and New Developments in MagnetoOptics, Ed. J. T.
Devereese, Plenum Press, NY (1979).
2. B. Horowitz and A. Madhukar, "Electronphonon interaction and cyclotron resonance
in two dimensional electron gas," Solid State Commun. 32, 695 (1979).
3. A. Madhukar and S. Das Sarma, "Electronphonon coupling and resonant magnetophonon
effect in optical behavior of twodimensionally confined charge carriers," Surf.
Sci. 98, 135 (1980).
4. S. Das Sarma and A. Madhukar, "Study of the electronphonon interactions and
magnetooptical anomalies in two dimensionally confined systems," Phys. Rev. B 22, 2823 (1980).
5. S. Das Sarma and A. Madhukar, "Formation of an anomalous acoustic plasmon in
spatially separated charged plasmas," Surf. Sci. 98, 563 (1980).
6. S. Das Sarma and A. Madhukar, "Collective modes of spatially separated, twocomponent,
twodimensional plasma in solids," Phys. Rev. B 23, 805 (1981).
7. M. Grabowski and A. Madhukar, "Theory of the transverse static magnetoconductivity
in a twodimensional electronphonon system," Solid State Commun. 41, 29
(1982).
8. M. Grabowski and A. Madhukar, "Quantum theory of magnetotransport in two dimensional
systems with electronimpurity, electronphonon and electronelectron interactions,"
Surf. Sc. 113, 273 (1982).
9. B. Horovitz, M. Grabowski, and A. Madhukar, "A theory of cyclotron resonance
in a two dimensional quantum Wigner crystal," Surf. Sc. 113, 318 (1982).
10. R. P. Vasquez, R. T. Kuroda, and A. Madhukar, "Observation of quantum confinement
effect away from the zone center in spectroscopic ellipsometry study of the dielectic
function of single Al0.3Ga0.7As/GaAsAl0.3Ga0.7As square quantum wells," J. Appl.
Phys. 61, 2973 (1987).
11. A. Madhukar, P. D. Lao, W. C. Tang, M. Aidan, and F. Voillot, "Observation
of phonon modes through resonant mixing with electronic states in the secondary
emission spectra of GaAs/Al0.32Ga0.68As single quantum well," Phys. Rev. Lett. 59, 1313 (1987).
Back to Top
(ii) Si/SiO2 Interface & Disorder
1. F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian,
and A. Madhukar, "High resolution XPS as a probe of local atomic structure: application
to amorphous SiO2 and the Si/SiO2 interface," Phys. Rev. Lett. 43, 1683
(1979).
2. R. N. Nucho and A. Madhukar, "Electronic structure of SiO2 quartz and the
influence of local disorder," Phys. Rev. B 21, 1576 (1980).
3. F. J. Grunthaner, B. F. Lewis, N. Zamani, J. Maserjian, and A. Madhukar, "XPS
studies of structure induced radiation effects at the Si/SiO2 interface," IEEE
Transactions on Nuclear Science 27, 1640 (1980).
4. F. J. Grunthaner, B. F. Lewis, R. P. Vasquez, J. Maserjian, and A.
Madhukar, "Reduced oxidation states and radiationinduced trap generation at the
Si/SiO2 interface," Physics of MIS Insulators, Eds. G. Lucovsky and S. T. Pantelides,
Pergamon Press (1980).
5. J. Singh and A. Madhukar, "The origin and nature of Si band gap states at the
Si/SiO2 interface," App. Phys. Lett. 38, 884 (1981).
6. J. Singh and A. Madhukar, "Origin of Ushaped background density of interface
states at non lattice matched semiconductor interfaces," J. Vac. Sci. Technol. 19, 437 (1981).
7. J. Singh and A. Madhukar, "A derivation for the energy dependence of the density
of band tail states in disordered materials," Solid State Comm. 41, 241
(1982).
Back to Top
(iii) PL LineWidth Behavior in QWs: Band Edge Discontinuity Fluctuations
1. S. B. Ogale, A. Madhukar, F. Voillot, M. Thomsen, W. C. Tang, T. C. Lee, J.
Y. Kim, and P. Chen, "Atomistic nature of heterointerfaces in IIIV semiconductorbased
quantumwell structures and its consequences for photoluminescence behavior,"
Phys. Rev. B 36, 1662 (1987).
P.D. Lao, W. C. Tang, A. Madhukar, and P. Chen, "A combined single phonon Raman
and photoluminescence study of direct and indirect band gap AlxGa1xAs alloys
grown by molecular beam epitaxy," J. Appl. Phys. 65, 1676 (1989).
Back to Top
(iv) SelfAssembled Quantum Dots: Photoluminescence(PL), PL Excitation Spectroscopy, ExcitonRelaxation, & Photocurrent Spectroscopy
2. R. Heitz, A. Kalburge, Q. Xie, M. Veit, M. Grundmann, P. Chen, A.
Madhukar, and D. Bimberg, "Energy relaxation in InAs/GaAs quantum dots," Proc.
of the 23rd Int. Conf. on the Physics of Semiconductors, Berlin, Germany, 1996
(Eds. M. Scheffler and R. Zimmermann), World Scientific, Singapore, 1425 (1996).
3. R. Heitz, M. Veit, M. Grundmann, N. N. Ledentsov, A. Hoffmann, D. Bimberg,
A. Kalburge, Q. Xie, P. Chen, A. Madhukar, V. M. Ustinov, P. S. Kopev, and Z.
I. Alferov, Carrier capture and relaxation processes in InAs/GaAs quantum dots,
Phys LowDimens. Str. 12, 163 (1997).
4. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Excitation transfer
in selforganized asymmetric quantumdot pairs, Phys. Rev. B 58, R10151
(1998).
5. R. Heitz, M. Veit, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, N. N. Ledentsov,
A. Hoffmann, A. Madhukar, D. Bimberg, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov,
Hot carrier relaxation in InAs/GaAs quantum dots, Physica E 2, 578 (1998).
6. R. Heitz, A. Kalburge, Q. Xie, M. Grandmann, P. Chen, A. Hoffmann, A. Madhukar,
and D. Bimberg, Excited states and energy relaxation in stacked InAs/GaAs quantum
dots, Phys. Rev. B 57, 9050 (1998).
7. Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, Selfassembled
InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,
J. Appl. Phys. 84, 3342 (1998).
8. R. Heitz, I. Mukhametzhanov, J. Zeng, P. Chen, A. Madhukar, and D. Bimberg,
Excitation transfer in novel selforganized quantum dot structures, Superlattice
Microst. 25, 97 (1999).
9. R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg, Temperature
dependent optical properties of self organized InAs/GaAs quantum dots, J. Electron.
Mater. 28, 520 (1999).
10. R. Heitz, I. Mukhametzanov, H. Born, M. Grundmann, A. Hoffman, A. Madhukar,
and D. Bimberg, Hot carrier relaxation in InAs/GaAs quantum dots, Physica B 272,
8 (1999).
11. R. Heitz, O. Stier, I. Mukhametzhanov, A. Madhukar, and D. Bimberg, Quantum
size effect in selforganized InAs/GaAs quantum dots, Phys. Rev. B 62,
11017 (2000).
12. R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar,
Resonant Raman scattering in selforganized InAs/GaAs quantum dots, Appl. Phys.
Lett. 77, 3746 (2000).
13. R. Heitz, F. Guffarth, I. Mukhametzhanov, M. Grundmann, A. Madhukar, and D.
Bimberg, Manybody effects on the optical spectra of InAs/GaAs quantum dots, Phys.
Rev. B 62, 16881 (2000).
14. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, Phononassisted
polar exciton transitions in selforganized InAs/GaAs quantum dots, Physica E 7, 398 (2000).
(v) ExcitonPhonon Coupling
1. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, Enhanced
polar excitonLOphonon interaction in quantum dots, Phys. Rev. Lett. 83,
4654 (1999).
Back to Top
I.3 Devices
HEMTs
1. N. M. Cho, P. G. Newman, D. J. Kim, A. Madhukar, D. D. Smith, T. Aucoin, and
G. J. Iafrate, "Realization of high mobility in inverted AlxGa1xAs/GaAs heterojunctions",
App. Phys. Lett. 52, 2037 (1988).
2. D. J. Kim, A. Madhukar, K. Z. Hu, and W. Chen, "Realization of high mobilities
at ultralow electron density in GaAsAl0.3Ga0.7As inverted heterojunctions," Appl.
Phys. Lett. 56, 1874 (1990).
3. P. M. Echternach, K. Z. Hu, A. Madhukar, and H. M. Bozler, "Transport measurements
on a high mobility, ultralow carrier concentration inverted GaAs/AlGaAs heterostructure,"
Physica B (N. Holland) 165, 871 (1990).
MISFETs
4. K. Kaviani, K. Z. Hu, Q. H. Xie, and A. Madhukar, "Realization of high performance
doped channel MISFETs in highly strained AlGaAs/InGaAs/AlgaAs based quantum wells,"
J. of Cryst. Growth 127, 68 (1993).
5. K. Kaviani, A. Madhukar, J. J. Brown, and L. E. Larson, "Realization of dopedchannel
MISFETs with high breakdown voltage in AlGaAs/InGaAs based material system," Electron.
Lett. 30, 669 (1994).
RTDs
6. R. Kapre, A. Madhukar, K. Kaviani, S. Guha, and K. C. Rajkumar, "Realization
and analysis of GaAs/AlAs/In0.1Ga0.9As based resonant tunneling diodes with high
peak to valley ratios at room temperature, App. Phys. Lett. 56, 922 (1990).
7. R. Kapre, A. Madhukar, and S. Guha, "In0.25Ga0.75As/AlAs based resonant tunneling
diodes grown on pre patterned and non patterned GaAs(100) substrates," IEEE Electr.
Device L. 11, 270 (1990).
8. R. M. Kapre, A. Madhukar, and S. Guha, "Highly strained pseudomorphic InxGa1xAs/AlAs
based resonant tunneling diodes grown on patterned and nonpatterned GaAs(100)
substrates," J. Cryst. Growth 111, 1110 (1991).
9. R. M. Kapre, A. Madhukar, and S. Guha, "Highly strained GaAs/InGaAs/AlAs resonant
tunneling diodes with simultaneously high peak current densities and peaktovalley
ratios at room temperature," Appl. Phys. Lett. 58, 2255 (1991).
SLMs
10. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, K. C. Rajkumar, K. Kaviani, Z. Karim,
C. Kyriakakis, and A. R. Tanguay, Jr., "High contrast ratio asymmetric FabryPerot
reflection light modulator based on GaAs/InGaAs multiple quantum wells," Appl.
Phys. Lett. 59, 1108 (1991).
11. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, C. Kyriakakis, Z. Karim, and A. R.
Tanguay, Jr., "Inverted cavity GaAs/InGaAs asymmetric FabryPerot reflection modulator,"
Appl. Phys. Lett. 59, 1664 (1991).
12. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, Q. Xie, K. C. Rajkumar, and K. Kaviani,
"Growth, behavior, and applications of strained GaInAs/AlGaAs multiple quantum
well based asymmetric FabryPerot reflection modulators," MRS Symp. Proc. 240,
615 (1992).
13. L. Chen, W. Chen, K. C. Rajkumar, K. Z. Hu, and A. Madhukar, "Observation
of the influence of strain induced deep level defects on the electroabsorption
characteristics of InGaAs/GaAs(100) multiple quantum well structures and implications
for light modulators," MRS Symp. Proc. 240, 621 (1992).
14. L. Chen, K. H. Hu, R. M. Kapre, and A. Madhukar, "High contrast ratio self
electrooptic devices based on inverted InGaAs/GaAs asymmetric FabryPerot modulator,"
Appl. Phys. Lett. 60, 422 (1992).
15. L. Chen, K. Z. Hu, R. M. Kapre, W. Chen, and A. Madhukar, "High contrast optically
bistable optoelectronic switches based on InGaAs/GaAs(100) conventional and inverted
asymmetric FabryPerot modulators grown via molecular beam epitaxy," J. Vac. Sci.
Technol. B 10, 1014 (1992).
16. K. Z. Hu, L. Chen, K. Kaviani, P. Chen, and A. Madhukar, "All optical photonic
switches using integrated inverted asymmetric FabryPerot modulators and heterojunction
phototransistors," IEEE Photonic Tech. L. 4, 263 (1992).
17. D. Mahgerefteh, C.M. Yang, L. Chen, K. Z. Hu, W. Chen, E. Garmire, and A.
Madhukar, "Picosecond timeresolved measurements of electroabsorption in an InGaAs/GaAs
multiple quantum well pin modulator," Appl. Phys. Lett. 61, 2592 (1992).
18. Z. Karim, C. Kryiakakis, A. R. Tanguay, Jr., K. Z. Hu, L. Chen, and A. Madhukar,
"Externally deposited phasecompensating dielectric mirrors for asymmetric FabryPerot
cavity tuning," Appl. Phys. Lett. 64, 2913 (1994).
19. C. M. Yang, D. Mahgerefteh, E. Garmire, L. Chen, K. Z. Hu, and A. Madhukar,
"Sweepout times of electrons and holes in an InGaAs/GaAs multiple quantum well
modulator," Appl. Phys. Lett. 65, 995 (1994).
20. Z. Karim, C. Kyriakakis, A. R. Tanguay, Jr., R. F. Cartland, K. Z. Hu, L.
Chen, and A. Madhukar, "Postgrowth tuning of inverted cavity InGaAs/AlGaAs spatial
light modulators using phase compensating dielectric mirrors," Appl. Phys. Lett. 66, 2774 (1995).
21. C. Kyriakakis, Z. Karim, A. R. Tanguay, Jr., R. F. Cartland, A. Madhukar,
S. Piazzolla, B. K. Jenkins, C. B. Kuznia, A. A. Sawchuk, and C. von der Malsburg,
"Photonic implementations of neural networks," OSA Technical Digest Series 10,
128 (1995).
OPTICAL SWITCHES
22. L. Chen, R. M. Kapre, K. Z. Hu, and A. Madhukar, "High contrast optically
bistable optoelectronic switch based on InGaAs/GaAs(100) asymmetric FabryPerot
modulator, detector, and resonant tunneling diode," Appl. Phys. Lett. 59,
1523 (1991).
23. R. M. Kapre, L. Chen, K. Kaviani, K. Z. Hu, P. Chen, and A. Madhukar, "High
contrast optically bistable optoelectronic switches using strained InGaAs/AlGaAs
materials system," MRS Symp. Proc. 240, 875 (1992).
LASERS
24. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation of lasing from
vertically selforganized InAs threedimensional island quantum boxes on GaAs(001),"
IEEE Photonic Tech. Lett. 8, 965 (1996).
25. A. Kalburge, T. R. Ramachandran, R. Heitz, N. P. Kobayashi, Q. Xie, P. Chen,
and A. Madhukar, Optical investigations of InAs growth on GaAs and lasing in singly
and multiply stacked island quantum boxes, MRS Proc. 448, 487 (1997).
PHOTODETECTORS
26. I. Mukhametzhanov, Z. H. Chen, O. Baklenov, E. T. Kim, and A. Madhukar. Optical
and Photocurrent Spectroscopy Studies of Inter and IntraBand Transitions in
SizeTailored InAs/GaAs Quantum Dots, Phys. Stat. Sol. (b), 224, 697 (2001).
27. Z. H. Chen, O. Baklenov, E. T. Kim, I. Mukhametzhanov, J. Tie, A. Madhukar,
Z. Ye, and J. C. Campbell, InAs/AlxGa1xAs quantum dot infrared photodetectors
with undoped active regions, Infrared Phys. Techn. 42, 479 (2001).
28. Z. H. Chen, O. Baklenov, E. T. Kim, I. Mukhametzhanov, J. Tie, A. Madhukar,
Z. Ye, and J. C. Campbell, Normal incidence InAs/AlxGa1xAs quantum dot infrared
photodetectors with undoped active region, J. Appl. Phys. 89, 4558 (2001).
29. Z. H. Chen, E. T. Kim, and A. Madhukar, Normalincidence voltage tunable middle
and longwavelength infrared photoresponse in selfassembled InAs quantum dots,
Appl. Phys. Lett. 80, 2490 (2002).
30. E. T. Kim, Z. H. Chen, M. Ho, and A. Madhukar, Tailoring mid and longwavelength
dual response of InAs quantumdot infrared photodetectors using InxGa1xAs capping
layers, J. Vac. Sci. Technol. B 20, 1188 (2002).
31. Z. Ye, J. C. Campbell, Z. Chen, E. T. Kim, and A. Madhukar, Normalincidence
InAs selfassembled quantumdot infrared photodetectors with a high detectivity,
IEEE J. Quantum Electr. 38, 1234 (2002).
32. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and A. Madhukar, Voltagecontrollable
multiwavelength InAs quantumdot infrared photodetectors for mid and farinfrared
detection, J. Appl. Phys. 92, 4141 (2002).
33. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and A. Madhukar, InAs quantum
dot infrared photodetectors with In0.15Ga0.85As strain relief cap layers, J. Appl.
Phys. 92, 7462 (2002).
34. A. Madhukar and J. C. Campbell, Quantum
Dot Infrared Detectors, Ch.3, in Semiconductor Nanostructures for Optoelectronic
Applications, Ed. Todd Steiner, Artech House Inc., (Boston, 2004).
35. E. T. Kim, A. Madhukar, Z. Ye, and J. C. Campbell,
High performance quantum dot infrared detectors , Appl. Phys. Lett. 84, 3277 (2003).
Back to Top
