Nanostructure Materials & Devices Laboratory
Publications >>




I. Self-Assembled Semiconductor Epitaxical Nanostructure for Electronics/Optoelectronics


I.1 (a) Atomic Scale Understanding of Heteroepitaxy

I.1 (b) Growth Controlled Self-Assembly of Nanostructures
I.2 Electronic Structure and Response
I.3 Devices
___________________________________________________________________________________


I. Self-Assembled Semiconductor Epitaxical Nanostructure for Electronics/Optoelectronics

I.1 (a) Atomic Scale Understanding of Heteroepitaxy

(i) Homoepitaxy: Fundamentals of MBE Growth; KMC and RHEED

Kinetic Monte-Carlo Computer Simulations:

1. A. Madhukar, "Far from equilibrium vapor phase growth of lattice matched III-V compound semiconductors interfaces: some basic concepts and Monte-Carlo computer simulations," Surface Science 132, 344 (1983).

2. J. Singh and A. Madhukar, "Prediction of a kinetically controlled surface roughening: a Monte-Carlo computer simulation study," Phys. Rev. Lett. 51, 794 (1983).

3. J. Singh and A. Madhukar, "Surface orientation dependent surface kinetics and interface roughening in molecular beam epitaxial growth of III-V semiconductors: a Monte-Carlo study," J. Vac. Sci. Tech. B 1, 305 (1983).

4. S. V. Ghaisas and A. Madhukar, "Monte-Carlo simulations of MBE growth of III-V semiconductors: the growth kinetics, mechanisms and consequences for the dynamics of RHEED intensity," J. Vac. Sc. Tech. B 3, 540 (1985).

5. A. Madhukar and S. V. Ghaisas, "Implications of the configuration-dependent-reactive-incorporation growth process for the group V pressure and substrate temperature dependence of III-V molecular beam epitaxial growth and the dynamics of the reflection high energy electron diffraction intensity," Appl. Phys. Letts. 47, 247 (1985).

6. S. V. Ghaisas and A. Madhukar, "Role of surface molecular reactions in influencing the growth mechanism and the nature of non-equilibrium surfaces: a Monte-Carlo study of molecular beam epitaxy," Phys. Rev. Lett. 56, 1066 (1986).

7. M. Thomsen and A. Madhukar, "Computer simulations of the role of group V molecular reactions at steps during the molecular beam epitaxial growth of III-V semiconductors," J. Cryst. Growth 80, 275 (1987).

RHEED Studies:

8. B. F. Lewis, F. J. Grunthaner, A. Madhukar, T. C. Lee, and R. Fernandez, "RHEED intensity behaviour during MBE growth of GaAs(100) and implications for growth kinetics and mechanisms," J. Vac. Sci. Tech. B3, 1317 (1985).

9. P. Chen, A. Madhukar, J. Y. Kim, and T. C. Lee, "Existence of metastable step density distributions on GaAs(100) surfaces and their consequences for molecular beam epitaxial growth," Appl. Phys. Lett. 48, 650 (1986).

10. B. F Lewis, R. F. Fernandez, A. Madhukar, and F. J. Grunthaner, "Arsenic-induced intensity oscillations in reflection high-energy electron diffraction measurements," J. Vac. Sci. Technol. B 4, 560 (1986).

11. P. Chen, J. Y. Kim, A. Madhukar, and N. M. Cho, "Optimal surface and growth front of III-V semiconductors in MBE: a study of kinetic processes via RHEED specular beam intensity measurement on GaAs(100)," J. Vac. Sci. Tech. B 4, 890 (1986).

12. S. B. Ogale, M. Thomsen, and A. Madhukar, "Surface kinetic processes and the morphology of equilibrium GaAs(100) surfaces: a Monte Carlo study," Appl. Phys. Lett. 52, 723 (1988).

13. P. Chen, K. C. Rajkumar, and A. Madhukar, "Growth control of GaAs epilayers with specular surface free of pyramids and twins on nonmisoriented (111)B substrates," Appl. Phys. Lett. 58, 1771 (1991).

14. P. Chen, K. C. Rajkumar, and A. Madhukar, "Relation between reflection high energy electron diffraction specular beam intensity and the surface atomic structure surface morphology of GaAs(111)B," J. Vac. Sci. Technol. B 9, 2312 (1991).

Back to Top

(ii) Heteroepitaxy: Lattice Matched

KMC

15. M. Thomsen, S. V. Ghaisas, and A. Madhukar, "Examination of the nature of lattice matched III-V semiconductor interfaces using computer simulated molecular beam epitaxial growth; I. AC/BC interfaces," J. Cryst. Growth 84, 79 (1987).

16. M. Thomsen and A. Madhukar, "Examination of the nature of lattice matched III-V semiconductor interfaces using computer simulated molecular beam epitaxial growth AxB1-xC/BC interfaces, " J. Cryst. Growth 84, 98 (1987).

17. A. Madhukar and S. V. Ghaisas, "The nature of molecular beam epitaxial growth examined via computer simulations," CRC Critical Reviews in Solid State and Materials Sciences, Vol. 14, pages1-131, (1988).

RHEED/PL

18. A. Madhukar, T. C. Lee, M. Y. Yen, P. Chen, J. Y. Kim, S. V. Ghaisas, and P. G. Newman, "Role of surface kinetics and interrupted growth during molecular beam epitaxial growth of normal and inverted GaAs/AlGaAs(100) interfaces: a reflection high energy electron diffraction intensity dynamics study," Appl. Phys. Lett. 46, 1148 (1985).

19. F. Voillot, A. Madhukar, J. Y. Kim, P. Chen, N. M. Cho, W. C. Tang, and P. G. Newman, "Observation of kinetically controlled monolayer step height distribution at normal and inverted interfaces in ultrathin GaAs/AlxGa1-xAs quantum wells," Appl. Phys. Lett. 48, 1009 (1986).

20. M. Y. Yen, T. C. Lee, P. Chen, and A. Madhukar, "Kinetics of the formation of normal and inverted molecular beam epitaxial interfaces: a reflection high-energy electron diffraction dynamics study of GaAs/AlxGa1-xAs(100) multiple quantum wells," J. Vac. Sci. Technol. B 4, 590 (1986).

21. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, "The temporal behavior of RHEED intensity and implications for growth kinetics during MBE growth of GaAs/AlxGa1-xAs(100) modulated structures," Surf. Science 174, 55 (1986).

22. J. Y. Kim, F. Voillot, P. Chen, A. Madhukar, N. M. Cho, and W. C. Tang, "A photoluminescence study of GaAs/AlxGa1-xAs (100) single quantum wells grown via MBE under RHEED determined optimized growth conditions for continuous and interrupted growth," Jour. Elec. Materials 15, 317 (1986).

23. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, "Kinetic processes in molecular beam epitaxy of GaAs(100) and AlAs(100) examined via static and dynamic behaviour of RHEED intensities," J. Vac. Sci. Tech. A 4, 884 (1986).

24. P. Chen, A. Madhukar, J. Y. Kim, and N. M. Cho, "The nature of surface migration during MBE growth of III-V compounds: a study via the RHEED specular beam intensity dynamics," Proceedings of the 18th International Conference of Physics of Semiconductors, (Aug. 11-15, 1986, Stockholm, Sweden) Ed. Olof Engstrom, World Scientific Press, Singapore 1, 109 (1987).

25. F. Voillot, J. Y. Kim, W. C. Tang, A. Madhukar, and P. Chen, "Near band-edge luminescence studies of the effect of interfacial step distribution and alloy disorder in ultrathin GaAs/AlxGa1-xAs(100) single quantum wells grown by MBE under RHEED determined condition," Superlattices and Microstructures 3, 313 (1987).

26. J. Y. Kim, P. Chen, F. Voillot, and A. Madhukar, "Photoluminescence and reflection high energy electron diffraction dynamics study of the interfaces in molecular beam epitaxially grown GaAs/Al0.33Ga0.67As (100) single quantum wells," Appl. Phys. Lett. 50, 739 (1987).

27. N. M. Cho, P. Chen, and A. Madhukar, "Specular beam intensity behavior in reflection high energy electron diffraction during molecular beam epitaxial growth of Al0.3Ga0.7As on GaAs(100) and implications for inverted interfaces," Appl. Phys. Lett. 50, 1909 (1987).

28. A. Madhukar, P. Chen, F. Voillot, M. Thomsen, J. Y. Kim, W. C. Tang, and S. V. Ghaisas, "A combined computer simulation, RHEED intensity dynamics and photoluminescence study of the surface kinetics controlled interface formation in MBE grown GaAs/AlxGa1-xAs(100) quantum well structures," J. Cryst. Growth 81, 26 (1987).

29. F. Voillot, A. Madhukar, W. C. Tang, M. Thomsen, J. Y. Kim, and P. Chen, "Growth kinetics of MBE grown GaAs/Al0.3Ga0.7As (100) normal and inverted interfaces in thin single quantum well structures examined via photoluminescence studies," Appl. Phys. Lett. 50, 194 (1987).

30. S. B. Ogale, A. Madhukar, F. Voillot, M. Thomsen, W. C. Tang, T. C. Lee, J. Y. Kim, and P. Chen, "Atomistic nature of heterointerfaces in III-V semiconductor-based quantum-well structures and its consequences for photoluminescence behavior," Phys. Rev. B 36, 1662 (1987).

Back to Top

(iii) Heteroepitaxy: Lattice Mismatched (Strained)

31. B. F. Lewis, T. C. Lee, F. J. Grunthaner, A. Madhukar, R. Fernandez, and J. Maserjian, "RHEED oscillation studies of kinetics and lattice mismatch strain-induced effects during InGaAs growth on GaAs(100)," J. Vac. Sci. Tech. B 2, 419 (1984).

32. F. J. Grunthaner, A. Madhukar, B. Lewis, M. Y. Yen, T. C. Lee, and R. Fernandez, "Control of interface morphology in MBE growth of InAs/GaAs superlattices by RHEED intensity measurement," Proceedings of the International Conference on Superlattices (Aug. 1984, Urbana, IL).

33. F. J. Grunthaner, M. Y. Yen, A. Madhukar, R. Fernandez, T. C. Lee, and B. F. Lewis, "Molecular beam epitaxial growth of GaAs/InAs multiple interface structures," App. Phys. Letts. 46, 983 (1985).

34. M. Y. Yen, A. Madhukar, B. F. Lewis, R. Fernandez, L. Eng, and F. J. Grunthaner, "Cross-sectional transmission electron microscope studies of GaAs/InAs(100) strain layer modulated structures grown by molecular beam epitaxy," Surf. Science 174, 606 (1986).

35. S. Guha, A. Madhukar, and Li Chen, "Defect reduction in strained InxGa1-xAs via growth on GaAs(100) substrates patterned to submicron dimensions," Appl. Phys. Letts. 56, 2304 (1990).

36. A. Madhukar, K. C. Rajkumar, L. Chen, S. Guha, K. Kaviani, and R. Kapre, "Realization of low defect density, ultra thick, strained InGaAs/GaAs multiple quantum well structures via growth on patterned GaAs(100) substrates," App. Phys. Letts. 57, 2007 (1990).

KMC Simulations of Strained Epitaxy

37. S. V. Ghaisas and A. Madhukar, "Computer simulations of the role of surface reconstruction, stoichiometry and strain in molecular beam epitaxical growth," Proceedings of the SPIE Symposium on Growth of Advanced Semiconductor Structures, (13-18 March, 1988, Newport Beach Marriott Hotel, CA), Ed. A. Madhukar, 944, 16.

38. S. V. Ghaisas and A. Madhukar, "Influence of compressive and tensile strain on growth mode during epitaxical growth: a computer simulation study," App. Phys. Lett. 53, 1599 (1988).

39. S. V. Ghaisas and A. Madhukar, "Nature of the oscillatory surface smoothness and its consequences during molecular beam epitaxy of strained layers: a computer simulation study," J. Appl. Phys. 65, 1888 (1989).

40. S. V. Ghaisas and A. Madhukar, "Surface kinetics and growth interruption in molecular beam epitaxy of compound semiconductors: a computer simulation study," J. Appl. Phys. 65, 3872 (1989).

41. S. V. Ghaisas and A. Madhukar, "Kinetic aspects of growth front surface morphology and defect formation during molecular beam epitaxy growth of strained thin films," J. Vac. Sci. Technol. B 7, 264 (1989).

In-Situ STM / AFM studies of Evolution of InAs islands on GaAs(001):

42. T. R. Ramachandran, R. Heitz, P. Chen, and A. Madhukar, "Mass transfer in Stranski-Krastanow growth of InAs on GaAs," Appl. Phys. Lett. 70, 640 (1997).

43. R. Heitz, T. R. Ramachandran, A. Kalburge, Q. Xie, I. Mukhametzhanov, P. Chen, and A. Madhukar, "Observation of re-entrant 2D to 3D morphology transition in highly strained epitaxy: InAs on GaAs," Phys. Rev. Lett. 78, 4071 (1997).

44. T. R. Ramachandran, R. Heitz, N. P. Kobayashi, A. Kalburge, W. Yu, P. Chen, and A. Madhukar, "Re-entrant behavior of 2D to 3D morphology change and 3D island lateral size equalization via mass exchange in Stranski-Krastanow growth: InAs on GaAs (001)," J. Cryst. Growth 175, 216 (1997).

45. T. R. Ramachandran, N. P. Kobayashi, P. Chen, and A. Madhukar, The formation and evolution of InAs 3D islands on GaAs(001) and a comparative C-AFM and NC-AFM study of InAs 3D islands, MRS Proc. 440, 31 (1997).

Back to Top

I.1 (b) Growth Controlled Self-Assembly of Nanostructures

(i) Lattice Matched Systems: Patterned Substrates

46. S. Guha, A. Madhukar, K. Kaviani, L. Chen, R. Kuchibhotla, R. Kapre, M. Hyugaji and S. Xie, "Molecular beam epitaxical growth of AlxGa1-xAs on non-planar patterned GaAs (001)," Proceedings of the MRS Symposium on III-V Heterostructures for Electronic/Photonic Devices, 145, 27 (1989).

47. S. Guha, A. Madhukar, L. Chen, K. C. Rajkumar, and R. Kapre, "Interfacet migration and defect formation in heteroepitaxy on patterned substrates: AlGaAs and InGaAs on GaAs(100) in MBE," SPIE Proceedings on Growth of Semiconductor Structures and High TC Superconductors, Ed. A. Madhukar, Thin Films on Semiconductors, 1285, 160 (1990).

48. K. C. Rajkumar, K. Kaviani, J. Chen, P. Chen, A. Madhukar, and D. H. Rich, "In-situ approach to realization of three-dimensionally confined structures on patterned GaAs(111)B substrates," MRS Proceed 263, 163 (1992).

49. K. C. Rajkumar, K. Kaviani, P. Chen, A. Madhukar, K. Rammohan, and D. H. Rich, "One step in-situ quantum dots via molecular beam epitaxy," J. Cryst. Growth 127, 863 (1993).

50. A. Madhukar, K. C. Rajkumar, and P. Chen, "In-situ approach to realization of three-dimensionally confined structures via substrate encoded size reducing epitaxy on nonplanar patterned substrates," Appl. Phys. Lett. 62, 1547 (1993).

51. S. Guha and A. Madhukar, "An explanation for the directionality of interfacet migration during molecular beam epitaxical growth on patterned substrates," J. Appl. Phys. 73, 8662 (1993).

52. K. C. Rajkumar, A. Madhukar, K. Rammohan, D. H. Rich, P. Chen, and L. Chen, "Optically active 3-dimensionally confined structures realized via molecular beam epitaxical growth on nonplanar GaAs(111)B," Appl. Phys. Lett. 63, 2905 (1993).

53. A. Madhukar, "Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructure," Thin Solid Films 231, 8 (1993)

54. K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, "Realization of 3-dimensionally confined structures via one-step in-situ molecular beam epitaxy on appropriately patterned GaAs(111)," J. Vac. Sci. Technol. B 12, 1071 (1994).

55. A. Konkar, K. C. Rajkumar, Q. Xie, P. Chen, A. Madhukar, H. T. Lin, and D. H. Rich, In-situ fabrication of 3-dimensionally confined GaAs and InAs volumes via growth on non-planar patterned GaAs(001) substrates, J. Cryst. Growth 150, 311 (1995).

56. A. Konkar, A. Madhukar, and P. Chen, Creating 3-D confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation, Paper presented at MRS Spring 95 Meeting (April 17-21, 1995, San Francisco, CA), MRS Symposium Proc. 380, 17 (1995).

57. A. Konkar, H. T. Lin, D. H. Rich, P. Chen, and A. Madhukar, Growth controlled fabrication and cathodoluminescence study of 3D confined GaAs volumes on non-planar patterned GaAs(001) substrates, J. Crys. Growth 175, 741 (1997).

58. D. H. Rich, H. T. Lin, A. Konkar, P. Chen, and A. Madhukar, "Cathodoluminescence study of band filling and carrier thermalization in GaAs/AlGaAs quantum boxes," J. Appl. Phys. 81, 1781 (1997).

59. H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, "Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence," J. Appl. Phys. 81, 3186 (1997).

60. A. Kalburge, A. Konkar, T. R. Ramachandran, P. Chen, and A. Madhukar, "Focused ion beam assisted chemically etched mesas on GaAs(001) and the nature of subsequent molecular beam epitaxial growth," J. Appl. Phys. 82, 859 (1997).

Back to Top

(ii) Lattice Mismatched Epitaxy: Strained Coherent Islands (Self-Assembled Quantum Dots)

61. S. Guha, A. Madhukar, and K.C. Rajkumar, "Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained InxGa1-xAs on GaAs(100), Appl. Phys. Lett. 57, 2110 (1990).

62. A. Madhukar, Q. Xie, P. Chen, and A. Konkar, "Nature of strained InAs 3-dimensional island formation and distribution on GaAs(100)," Appl. Phys. Lett. 64, 2727 (1994).

63. P. Chen, Q. Xie, A. Madhukar, L. Chen, and A. Konkar, "Mechanisms of strained island formation in molecular beam epitaxy of InAs on GaAs(100)," PCSI Proceedings, Jan. 24-28, 1994 Meeting, Mohonk, NY, J. Vac. Sci. Technol. B 12, 2568 (1994).

64. Q. H. Xie, P. Chen, and A. Madhukar, InAs island-induced-strain driven adatom migration during GaAs overlayer growth, Appl. Phys. Lett. 65 (16), 2051 (1994).

65. Q. Xie, A. Konkar, A. Kalburge, T. R. Ramachandran, P. Chen, R. Cartland, A. Madhukar, H. T. Lin, and D. H. Rich, Structural and optical behaviour of strained InAs quantum boxes grown on planar and patterned GaAs(100) substrates by molecular beam epitaxy, J. Vac. Sci. Technol. B 13, 642 (1995).

66. Q. Xie, P. Chen, A. Kalburge, T. R. Ramachandran, A. Nayfanov, A. Konkar, and A. Madhukar, Realization of optically active strained InAs island quantum boxes on GaAs(100) via molecular beam epitaxy and the role of island induced strain fields, J. Cryst. Growth 150, 357 (1995).

67. A. Madhukar, P. Chen, Q. Xie, A. Konkar, T. R. Ramachandran, N. P. Kobayashi, and R. Viswanathan, Semiconductor nanostructures: natures way, Proc. NATO Advanced Research Workshop, Feb.20-24, 1995, Ringberg Castle (Germany), Eds. K. Eberl, P. Demecster, and P. Petroff, Low Dimensional Structures prepared by Epitaxial Growth or Regrowth on Patterned Substrates, (Kluwer Academic Publishers, The Netherlands, 1995), 19 (1995).

68. Q. H. Xie, N. P. Kobayashi, T. R. Ramachandran, A. Kalburge, P. Chen, and A. Madhukar, InAs island quantum box formation and vertical self-organization on GaAs(100) via molecular beam epitaxy, Paper presented at MRS Spring 95 Meeting (April 17-21, 1995, San Francisco, CA), MRS Symp. Proc. 379, 177 (1995).

69. Q. H. Xie, A. Madhukar, P. Chen, and N. Kobayashi, Vertically self-organized InAs quantum box islands on GaAs(100), Phys. Rev. Lett. 75, 2542 (1995).

70. Q. H. Xie, N. P. Kobayashi, T. R. Ramachandran, A. Kalburge, P. Chen, and A. Madhukar, Strained coherent InAs quantum box islands on GaAs(100): size equalization, vertical self-organization, and optical properties, J. Vac. Sci. Technol. B 14, 2203 (1996).

71. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, In-situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001), Appl. Phys. Lett. 68, 3299 (1996).

72. T. R. Ramachandran, A. Madhukar, I. Mukhametzhanov, R. Heitz, A. Kalburge, Q. Xie, and P. Chen, Nature of Stranski-Krastanow growth of InAs on GaAs(001), J. Vac. Sci. Technol. B 16, 1330 (1998).

73. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, Independent manipulation of density and size of stress-driven self assembled quantum dots, Appl. Phys. Lett. 73, 1841 (1998).

74. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Excitation transfer in self-organized asymmetric quantum-dot pairs, Phys. Rev. B 58, R10151 (1998).

75. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar, Punctuated island growth: an approach to examination and control of quantum dot density, size, and shape evolution, Appl. Phys. Lett. 75, 85 (1999).

76. E. T. Kim, Z. H. Chen, and A. Madhukar, Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1-xAs strain-relieving quantum wells, Appl. Phys. Lett. 79, 3341 (2001).

77. E.T. Kim, Z. Chen, and A. Madhukar, Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer, Appl. Phys. Lett. 81, 3473 (2002).

Molecular Dynamics Simulations of Stress/Strain in SAQD systems

78. W. B. Yu and A. Madhukar, Molecular dynamics studies of surface stress in (2 x N) Gen/Si(001), Proc. of the 23rd Int. Conf. on the Physics of Semiconductors, (Berlin, Germany, 1996) Eds. M. Scheffler and R. Zimmermann, World Scientific, Singapore, 971 (1996).

79. W. Yu and A. Madhukar, Molecular dynamics studies of the stress distribution in strained semiconductor nanostructures, Proc. of the 23rd Int. Conf. on the Physics of Semiconductors, (Berlin, Germany, 1996), Eds. M. Scheffler and R. Zimmermann, World Scientific, Singapore, 1309 (1996).

80. W. B. Yu and A. Madhukar, "Molecular dynamics study of coherent island energetics, stresses, and strains in highly strained epitaxy," Phys. Rev. Lett. 79, 905 (1997).

81. M. A. Makeev and A. Madhukar, Simulations of atomic level stresses in systems of buried Ge/Si islands, Phys. Rev. Lett. 86, 5542 (2001).

82. M. A. Makeev and A. Madhukar, Stress and strain fields from an array of spherical inclusions in semi-infinite elastic media: Ge nanoinclusions in Si, Phys. Rev. B, (In Press).

83. M. A. Makeev, W. Yu, and A. Madhukar, Stress distributions and energetics in the laterally ordered systems of buried pyramidal Ge/Si(001) islands: An atomistic simulation study, Phys. Rev. B, (Submitted).

Back to Top

(iii) Lateral-Ordering of Highly Strained Island Quantum Dots through SESRE

84. A. Konkar, K. C. Rajkumar, Q. Xie, P. Chen, A. Madhukar, H. T. Lin, and D. H. Rich, In-situ fabrication of 3-dimensionally confined GaAs and InAs volumes via growth on non-planar patterned GaAs(001) substrates, J. Cryst. Growth 150, 311 (1995).

85. A. Konkar, A. Madhukar, and P. Chen, Creating 3-D confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation, Paper presented at MRS Spring 95 Meeting (April 17-21, 1995, San Francisco, CA), MRS Symposium Proc. 380, 17 (1995).

86. A. Konkar, A. Madhukar, and P. Chen, "Stress-engineered spatially selective self-assembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates," Appl. Phys. Lett. 72, 220 (1998).

87. A. Konkar, R. Heitz, T. R. Ramachandran, P. Chen, and A. Madhukar, Fabrication of strained InAs island ensembles on nonplanar patterned GaAs (001) substrates, J. Vac. Sci. Technol. B 16, 3 (1998).

88. X. Su, R. K. Kalia, A. Madhukar, A. Nakano, and P. Vashishta, Multimillion atom simulation of atomic-level surface stresses on InAs/GaAs nanomesas, Proc. of MRS Symposium, Fall 1999, 548, 269 (2000).

89. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, Million-atom molecular dynamics simulation of flat InAs overlayers with self-limiting thickness on GaAs square nanomesas, Appl. Phys. Lett. 78, 3717 (2001).

90. X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, Critical lateral size for stress domain formation in InAs/GaAs square nanomesas: a multimillion-atom molecular dynamics study, Appl. Phys. Lett. 79, 4577 (2001).

91. M. A. Makeev, (To be published)

92. X. T. Su, APL (2003)

Back to Top


I.2 Electronic Structure and Response

(i) Quantum Wells: Transport, Magneto-Transport, Magneto-Optics, & Collective Behavior (Plasmons)

1. A. Madhukar, "Resonant Landau level-optical phonon interaction in two-dimensionally confined charge carrier systems," Theoretical Aspects and New Developments in Magneto-Optics, Ed. J. T. Devereese, Plenum Press, NY (1979).

2. B. Horowitz and A. Madhukar, "Electron-phonon interaction and cyclotron resonance in two dimensional electron gas," Solid State Commun. 32, 695 (1979).

3. A. Madhukar and S. Das Sarma, "Electron-phonon coupling and resonant magneto-phonon effect in optical behavior of two-dimensionally confined charge carriers," Surf. Sci. 98, 135 (1980).

4. S. Das Sarma and A. Madhukar, "Study of the electron-phonon interactions and magneto-optical anomalies in two dimensionally confined systems," Phys. Rev. B 22, 2823 (1980).

5. S. Das Sarma and A. Madhukar, "Formation of an anomalous acoustic plasmon in spatially separated charged plasmas," Surf. Sci. 98, 563 (1980).

6. S. Das Sarma and A. Madhukar, "Collective modes of spatially separated, two-component, two-dimensional plasma in solids," Phys. Rev. B 23, 805 (1981).

7. M. Grabowski and A. Madhukar, "Theory of the transverse static magnetoconductivity in a two-dimensional electron-phonon system," Solid State Commun. 41, 29 (1982).

8. M. Grabowski and A. Madhukar, "Quantum theory of magnetotransport in two dimensional systems with electron-impurity, electron-phonon and electron-electron interactions," Surf. Sc. 113, 273 (1982).

9. B. Horovitz, M. Grabowski, and A. Madhukar, "A theory of cyclotron resonance in a two dimensional quantum Wigner crystal," Surf. Sc. 113, 318 (1982).

10. R. P. Vasquez, R. T. Kuroda, and A. Madhukar, "Observation of quantum confinement effect away from the zone center in spectroscopic ellipsometry study of the dielectic function of single Al0.3Ga0.7As/GaAsAl0.3Ga0.7As square quantum wells," J. Appl. Phys. 61, 2973 (1987).

11. A. Madhukar, P. D. Lao, W. C. Tang, M. Aidan, and F. Voillot, "Observation of phonon modes through resonant mixing with electronic states in the secondary emission spectra of GaAs/Al0.32Ga0.68As single quantum well," Phys. Rev. Lett. 59, 1313 (1987).

Back to Top

(ii) Si/SiO2 Interface & Disorder

1. F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian, and A. Madhukar, "High resolution XPS as a probe of local atomic structure: application to amorphous SiO2 and the Si/SiO2 interface," Phys. Rev. Lett. 43, 1683 (1979).

2. R. N. Nucho and A. Madhukar, "Electronic structure of SiO2 -quartz and the influence of local disorder," Phys. Rev. B 21, 1576 (1980).

3. F. J. Grunthaner, B. F. Lewis, N. Zamani, J. Maserjian, and A. Madhukar, "XPS studies of structure induced radiation effects at the Si/SiO2 interface," IEEE Transactions on Nuclear Science 27, 1640 (1980).

4. F. J. Grunthaner, B. F. Lewis, R. P. Vasquez, J. Maserjian, and A. Madhukar, "Reduced oxidation states and radiation-induced trap generation at the Si/SiO2 interface," Physics of MIS Insulators, Eds. G. Lucovsky and S. T. Pantelides, Pergamon Press (1980).

5. J. Singh and A. Madhukar, "The origin and nature of Si band gap states at the Si/SiO2 interface," App. Phys. Lett. 38, 884 (1981).

6. J. Singh and A. Madhukar, "Origin of U-shaped background density of interface states at non lattice matched semiconductor interfaces," J. Vac. Sci. Technol. 19, 437 (1981).

7. J. Singh and A. Madhukar, "A derivation for the energy dependence of the density of band tail states in disordered materials," Solid State Comm. 41, 241 (1982).

Back to Top

(iii) PL Line-Width Behavior in QWs: Band Edge Discontinuity Fluctuations

1. S. B. Ogale, A. Madhukar, F. Voillot, M. Thomsen, W. C. Tang, T. C. Lee, J. Y. Kim, and P. Chen, "Atomistic nature of heterointerfaces in III-V semiconductor-based quantum-well structures and its consequences for photoluminescence behavior," Phys. Rev. B 36, 1662 (1987).

P.D. Lao, W. C. Tang, A. Madhukar, and P. Chen, "A combined single phonon Raman and photoluminescence study of direct and indirect band gap AlxGa1-xAs alloys grown by molecular beam epitaxy," J. Appl. Phys. 65, 1676 (1989).

Back to Top

(iv) Self-Assembled Quantum Dots: Photoluminescence(PL), PL Excitation Spectroscopy, Exciton-Relaxation, & Photocurrent Spectroscopy

2. R. Heitz, A. Kalburge, Q. Xie, M. Veit, M. Grundmann, P. Chen, A. Madhukar, and D. Bimberg, "Energy relaxation in InAs/GaAs quantum dots," Proc. of the 23rd Int. Conf. on the Physics of Semiconductors, Berlin, Germany, 1996 (Eds. M. Scheffler and R. Zimmermann), World Scientific, Singapore, 1425 (1996).

3. R. Heitz, M. Veit, M. Grundmann, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. Kalburge, Q. Xie, P. Chen, A. Madhukar, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, Carrier capture and relaxation processes in InAs/GaAs quantum dots, Phys Low-Dimens. Str. 12, 163 (1997).

4. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Excitation transfer in self-organized asymmetric quantum-dot pairs, Phys. Rev. B 58, R10151 (1998).

5. R. Heitz, M. Veit, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, N. N. Ledentsov, A. Hoffmann, A. Madhukar, D. Bimberg, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, Hot carrier relaxation in InAs/GaAs quantum dots, Physica E 2, 578 (1998).

6. R. Heitz, A. Kalburge, Q. Xie, M. Grandmann, P. Chen, A. Hoffmann, A. Madhukar, and D. Bimberg, Excited states and energy relaxation in stacked InAs/GaAs quantum dots, Phys. Rev. B 57, 9050 (1998).

7. Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence, J. Appl. Phys. 84, 3342 (1998).

8. R. Heitz, I. Mukhametzhanov, J. Zeng, P. Chen, A. Madhukar, and D. Bimberg, Excitation transfer in novel self-organized quantum dot structures, Superlattice Microst. 25, 97 (1999).

9. R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg, Temperature dependent optical properties of self organized InAs/GaAs quantum dots, J. Electron. Mater. 28, 520 (1999).

10. R. Heitz, I. Mukhametzanov, H. Born, M. Grundmann, A. Hoffman, A. Madhukar, and D. Bimberg, Hot carrier relaxation in InAs/GaAs quantum dots, Physica B 272, 8 (1999).

11. R. Heitz, O. Stier, I. Mukhametzhanov, A. Madhukar, and D. Bimberg, Quantum size effect in self-organized InAs/GaAs quantum dots, Phys. Rev. B 62, 11017 (2000).

12. R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, Resonant Raman scattering in self-organized InAs/GaAs quantum dots, Appl. Phys. Lett. 77, 3746 (2000).

13. R. Heitz, F. Guffarth, I. Mukhametzhanov, M. Grundmann, A. Madhukar, and D. Bimberg, Many-body effects on the optical spectra of InAs/GaAs quantum dots, Phys. Rev. B 62, 16881 (2000).

14. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, Phonon-assisted polar exciton transitions in self-organized InAs/GaAs quantum dots, Physica E 7, 398 (2000).

(v) Exciton-Phonon Coupling

1. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, Enhanced polar exciton-LO-phonon interaction in quantum dots, Phys. Rev. Lett. 83, 4654 (1999).

Back to Top

I.3 Devices

HEMTs

1. N. M. Cho, P. G. Newman, D. J. Kim, A. Madhukar, D. D. Smith, T. Aucoin, and G. J. Iafrate, "Realization of high mobility in inverted AlxGa1-xAs/GaAs heterojunctions", App. Phys. Lett. 52, 2037 (1988).

2. D. J. Kim, A. Madhukar, K. Z. Hu, and W. Chen, "Realization of high mobilities at ultralow electron density in GaAsAl0.3Ga0.7As inverted heterojunctions," Appl. Phys. Lett. 56, 1874 (1990).

3. P. M. Echternach, K. Z. Hu, A. Madhukar, and H. M. Bozler, "Transport measurements on a high mobility, ultralow carrier concentration inverted GaAs/AlGaAs heterostructure," Physica B (N. Holland) 165, 871 (1990).

MISFETs

4. K. Kaviani, K. Z. Hu, Q. H. Xie, and A. Madhukar, "Realization of high performance doped channel MISFETs in highly strained AlGaAs/InGaAs/AlgaAs based quantum wells," J. of Cryst. Growth 127, 68 (1993).

5. K. Kaviani, A. Madhukar, J. J. Brown, and L. E. Larson, "Realization of doped-channel MISFETs with high breakdown voltage in AlGaAs/InGaAs based material system," Electron. Lett. 30, 669 (1994).

RTDs

6. R. Kapre, A. Madhukar, K. Kaviani, S. Guha, and K. C. Rajkumar, "Realization and analysis of GaAs/AlAs/In0.1Ga0.9As based resonant tunneling diodes with high peak to valley ratios at room temperature, App. Phys. Lett. 56, 922 (1990).

7. R. Kapre, A. Madhukar, and S. Guha, "In0.25Ga0.75As/AlAs based resonant tunneling diodes grown on pre patterned and non patterned GaAs(100) substrates," IEEE Electr. Device L. 11, 270 (1990).

8. R. M. Kapre, A. Madhukar, and S. Guha, "Highly strained pseudomorphic InxGa1-xAs/AlAs based resonant tunneling diodes grown on patterned and nonpatterned GaAs(100) substrates," J. Cryst. Growth 111, 1110 (1991).

9. R. M. Kapre, A. Madhukar, and S. Guha, "Highly strained GaAs/InGaAs/AlAs resonant tunneling diodes with simultaneously high peak current densities and peak-to-valley ratios at room temperature," Appl. Phys. Lett. 58, 2255 (1991).

SLMs

10. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, K. C. Rajkumar, K. Kaviani, Z. Karim, C. Kyriakakis, and A. R. Tanguay, Jr., "High contrast ratio asymmetric Fabry-Perot reflection light modulator based on GaAs/InGaAs multiple quantum wells," Appl. Phys. Lett. 59, 1108 (1991).

11. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, C. Kyriakakis, Z. Karim, and A. R. Tanguay, Jr., "Inverted cavity GaAs/InGaAs asymmetric Fabry-Perot reflection modulator," Appl. Phys. Lett. 59, 1664 (1991).

12. K. Z. Hu, L. Chen, A. Madhukar, P. Chen, Q. Xie, K. C. Rajkumar, and K. Kaviani, "Growth, behavior, and applications of strained GaInAs/AlGaAs multiple quantum well based asymmetric Fabry-Perot reflection modulators," MRS Symp. Proc. 240, 615 (1992).

13. L. Chen, W. Chen, K. C. Rajkumar, K. Z. Hu, and A. Madhukar, "Observation of the influence of strain induced deep level defects on the electroabsorption characteristics of InGaAs/GaAs(100) multiple quantum well structures and implications for light modulators," MRS Symp. Proc. 240, 621 (1992).

14. L. Chen, K. H. Hu, R. M. Kapre, and A. Madhukar, "High contrast ratio self electro-optic devices based on inverted InGaAs/GaAs asymmetric Fabry-Perot modulator," Appl. Phys. Lett. 60, 422 (1992).

15. L. Chen, K. Z. Hu, R. M. Kapre, W. Chen, and A. Madhukar, "High contrast optically bistable optoelectronic switches based on InGaAs/GaAs(100) conventional and inverted asymmetric Fabry-Perot modulators grown via molecular beam epitaxy," J. Vac. Sci. Technol. B 10, 1014 (1992).

16. K. Z. Hu, L. Chen, K. Kaviani, P. Chen, and A. Madhukar, "All optical photonic switches using integrated inverted asymmetric Fabry-Perot modulators and heterojunction phototransistors," IEEE Photonic Tech. L. 4, 263 (1992).

17. D. Mahgerefteh, C.M. Yang, L. Chen, K. Z. Hu, W. Chen, E. Garmire, and A. Madhukar, "Picosecond time-resolved measurements of electroabsorption in an InGaAs/GaAs multiple quantum well p-i-n modulator," Appl. Phys. Lett. 61, 2592 (1992).

18. Z. Karim, C. Kryiakakis, A. R. Tanguay, Jr., K. Z. Hu, L. Chen, and A. Madhukar, "Externally deposited phase-compensating dielectric mirrors for asymmetric Fabry-Perot cavity tuning," Appl. Phys. Lett. 64, 2913 (1994).

19. C. M. Yang, D. Mahgerefteh, E. Garmire, L. Chen, K. Z. Hu, and A. Madhukar, "Sweep-out times of electrons and holes in an InGaAs/GaAs multiple quantum well modulator," Appl. Phys. Lett. 65, 995 (1994).

20. Z. Karim, C. Kyriakakis, A. R. Tanguay, Jr., R. F. Cartland, K. Z. Hu, L. Chen, and A. Madhukar, "Postgrowth tuning of inverted cavity InGaAs/AlGaAs spatial light modulators using phase compensating dielectric mirrors," Appl. Phys. Lett. 66, 2774 (1995).

21. C. Kyriakakis, Z. Karim, A. R. Tanguay, Jr., R. F. Cartland, A. Madhukar, S. Piazzolla, B. K. Jenkins, C. B. Kuznia, A. A. Sawchuk, and C. von der Malsburg, "Photonic implementations of neural networks," OSA Technical Digest Series 10, 128 (1995).

OPTICAL SWITCHES

22. L. Chen, R. M. Kapre, K. Z. Hu, and A. Madhukar, "High contrast optically bistable optoelectronic switch based on InGaAs/GaAs(100) asymmetric Fabry-Perot modulator, detector, and resonant tunneling diode," Appl. Phys. Lett. 59, 1523 (1991).

23. R. M. Kapre, L. Chen, K. Kaviani, K. Z. Hu, P. Chen, and A. Madhukar, "High contrast optically bistable optoelectronic switches using strained InGaAs/AlGaAs materials system," MRS Symp. Proc. 240, 875 (1992).

LASERS

24. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs(001)," IEEE Photonic Tech. Lett. 8, 965 (1996).

25. A. Kalburge, T. R. Ramachandran, R. Heitz, N. P. Kobayashi, Q. Xie, P. Chen, and A. Madhukar, Optical investigations of InAs growth on GaAs and lasing in singly and multiply stacked island quantum boxes, MRS Proc. 448, 487 (1997).

PHOTODETECTORS

26. I. Mukhametzhanov, Z. H. Chen, O. Baklenov, E. T. Kim, and A. Madhukar. Optical and Photocurrent Spectroscopy Studies of Inter- and Intra-Band Transitions in Size-Tailored InAs/GaAs Quantum Dots, Phys. Stat. Sol. (b), 224, 697 (2001).

27. Z. H. Chen, O. Baklenov, E. T. Kim, I. Mukhametzhanov, J. Tie, A. Madhukar, Z. Ye, and J. C. Campbell, InAs/AlxGa1-xAs quantum dot infrared photodetectors with undoped active regions, Infrared Phys. Techn. 42, 479 (2001).

28. Z. H. Chen, O. Baklenov, E. T. Kim, I. Mukhametzhanov, J. Tie, A. Madhukar, Z. Ye, and J. C. Campbell, Normal incidence InAs/AlxGa1-xAs quantum dot infrared photodetectors with undoped active region, J. Appl. Phys. 89, 4558 (2001).

29. Z. H. Chen, E. T. Kim, and A. Madhukar, Normal-incidence voltage tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots, Appl. Phys. Lett. 80, 2490 (2002).

30. E. T. Kim, Z. H. Chen, M. Ho, and A. Madhukar, Tailoring mid- and long-wavelength dual response of InAs quantum-dot infrared photodetectors using InxGa1-xAs capping layers, J. Vac. Sci. Technol. B 20, 1188 (2002).

31. Z. Ye, J. C. Campbell, Z. Chen, E. T. Kim, and A. Madhukar, Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity, IEEE J. Quantum Electr. 38, 1234 (2002).

32. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and A. Madhukar, Voltage-controllable multi-wavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection, J. Appl. Phys. 92, 4141 (2002).

33. Z. Ye, J. C. Campbell, Z. H. Chen, E. T. Kim, and A. Madhukar, InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain relief cap layers, J. Appl. Phys. 92, 7462 (2002).

34. A. Madhukar and J. C. Campbell, Quantum Dot Infrared Detectors, Ch.3, in Semiconductor Nanostructures for Optoelectronic Applications, Ed. Todd Steiner, Artech House Inc., (Boston, 2004).

35. E. T. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, High performance quantum dot infrared detectors , Appl. Phys. Lett. 84, 3277 (2003).
Back to Top